IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v275y2020ics0306261920308400.html
   My bibliography  Save this item

Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rongheng Li & Ali Hassan & Nishad Gupte & Wencong Su & Xuan Zhou, 2023. "Degradation Prediction and Cost Optimization of Second-Life Battery Used for Energy Arbitrage and Peak-Shaving in an Electric Grid," Energies, MDPI, vol. 16(17), pages 1-15, August.
  2. Shuang Yao & Leke Wu & Donghua Yu, 2023. "Synergy between Electric Vehicle Manufacturers and Battery Recyclers through Technology and Innovation: A Game Theory Approach," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  3. Giovanna Gonzales-Calienes & Ben Yu & Farid Bensebaa, 2022. "Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
  4. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
  5. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
  6. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
  7. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
  8. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
  9. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
  10. Rüther, Tom & Plank, Christian & Schamel, Maximilian & Danzer, Michael A., 2023. "Detection of inhomogeneities in serially connected lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
  11. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
  12. Xuan Zhao & Benhong Peng & Chaoyu Zheng & Anxia Wan, 2022. "Closed-loop supply chain pricing strategy for electric vehicle batteries recycling in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7725-7752, June.
  13. Zhiqiang Fan & Yifan Luo & Ningning Liang & Shanshan Li, 2023. "A Novel Sustainable Reverse Logistics Network Design for Electric Vehicle Batteries Considering Multi-Kind and Multi-Technology," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
  14. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
  15. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
  16. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  17. Jian Yang & Tiezhu Zhang & Hongxin Zhang & Jichao Hong & Zewen Meng, 2020. "Research on the Starting Acceleration Characteristics of a New Mechanical–Electric–Hydraulic Power Coupling Electric Vehicle," Energies, MDPI, vol. 13(23), pages 1-20, November.
  18. Menglin Zhan & Yan Chen, 2022. "Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
  19. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
  20. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
  21. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
  22. Maciej Neugebauer & Adam Żebrowski & Ogulcan Esmer, 2022. "Cumulative Emissions of CO 2 for Electric and Combustion Cars: A Case Study on Specific Models," Energies, MDPI, vol. 15(7), pages 1-17, April.
  23. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  24. Lukáš Janota & Tomáš Králík & Jaroslav Knápek, 2020. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service," Energies, MDPI, vol. 13(23), pages 1-36, December.
  25. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
  26. Cheng, Zhun, 2023. "High nonlinearity of BEV's stepped automatic transmission design objectives and its optimal solution by a novel ISA-RSA," Energy, Elsevier, vol. 282(C).
  27. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
  28. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective," Energies, MDPI, vol. 15(19), pages 1-44, October.
  29. Matija Kovačić & Maja Mutavdžija & Krešimir Buntak, 2022. "New Paradigm of Sustainable Urban Mobility: Electric and Autonomous Vehicles—A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.