IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p13771-d950950.html
   My bibliography  Save this article

Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies

Author

Listed:
  • Menglin Zhan

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China)

  • Yan Chen

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
    Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing Forestry University, Nanjing 210037, China)

Abstract

With the increase in the number of waste power batteries and the occurrence of related environmental problems, battery recycling is receiving extensive attention. Driven by economic benefits, many companies have begun to deploy the waste battery processing market and government subsidies also play an essential role in battery recycling. Considering the vehicle company outsources processing tasks or invests in research and development (R&D), this paper studies the optimal decision-making problem of the supply chain under government subsidy to the battery manufacturer or the battery manufacturer. The research finds that: (1) For the government, when the vehicle company outsources processing tasks, compared with subsidizing the vehicle company, the total recycling volume when subsidizing the battery manufacturer is higher. When the vehicle company invests in R&D, the total recycling volume under different government subsidy strategies is equal. (2) The vehicle company’s decision is only related to its processing costs; when the unit processing cost is low, the vehicle company’s profit under the strategy of investing in R&D is higher. However, when the unit processing cost is high, the profit of outsourcing processing tasks is higher. (3) With increase in unit subsidy and decrease in unit processing cost, the total recycling volume will increase. These findings can provide decision-making help for the government in formulating subsidy policies and the vehicle company in determining processing strategies in the future.

Suggested Citation

  • Menglin Zhan & Yan Chen, 2022. "Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13771-:d:950950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/13771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/13771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Wei-min & Zhao, Zhang & Ke, Hua, 2013. "Dual-channel closed-loop supply chain with government consumption-subsidy," European Journal of Operational Research, Elsevier, vol. 226(2), pages 221-227.
    2. Xiaodong Zhu & Wei Li, 2020. "The Pricing Strategy of Dual Recycling Channels for Power Batteries of New Energy Vehicles under Government Subsidies," Complexity, Hindawi, vol. 2020, pages 1-16, June.
    3. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
    4. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    5. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    6. Xuan Zhao & Benhong Peng & Chaoyu Zheng & Anxia Wan, 2022. "Closed-loop supply chain pricing strategy for electric vehicle batteries recycling in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7725-7752, June.
    7. Biao Li & Yong Geng & Xiqiang Xia & Dan Qiao & Hao Wang, 2021. "Comparatively Analyzing the Impact of Government Subsidy and Carbon Tax Policy on Authorized Remanufacturing," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    8. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    9. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    3. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    4. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective," Energies, MDPI, vol. 15(19), pages 1-44, October.
    5. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Yan Shen & Zizhao Song & Tian Gao & Ji Ma, 2022. "Research on Closed-Loop Supply Chain Decision Making of Power Battery Considering Subsidy Transfer under EPR System," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    8. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    9. Maciej Neugebauer & Adam Żebrowski & Ogulcan Esmer, 2022. "Cumulative Emissions of CO 2 for Electric and Combustion Cars: A Case Study on Specific Models," Energies, MDPI, vol. 15(7), pages 1-17, April.
    10. Shuang Yao & Leke Wu & Donghua Yu, 2023. "Synergy between Electric Vehicle Manufacturers and Battery Recyclers through Technology and Innovation: A Game Theory Approach," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    11. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
    12. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    13. Zhenfang Zhang & Min Guo & Wei Yang, 2022. "Analysis of NEV Power Battery Recycling under Different Government Reward-Penalty Mechanisms," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
    15. Zhiqiang Fan & Yifan Luo & Ningning Liang & Shanshan Li, 2023. "A Novel Sustainable Reverse Logistics Network Design for Electric Vehicle Batteries Considering Multi-Kind and Multi-Technology," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    16. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    17. Bertha Maya Sopha & Dwi Megah Purnamasari & Sholeh Ma’mun, 2022. "Barriers and Enablers of Circular Economy Implementation for Electric-Vehicle Batteries: From Systematic Literature Review to Conceptual Framework," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    18. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    19. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    20. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13771-:d:950950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.