IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3885-d1642609.html
   My bibliography  Save this article

Optimizing Reverse Logistics Network for Waste Electric Vehicle Batteries: The Impact Analysis of Chinese Government Subsidies and Penalties

Author

Listed:
  • Zhiqiang Fan

    (Energy Economy Research Center, School of Business Administration, Henan Polytechnic University, Jiaozuo 454003, China)

  • Xiaoxiao Li

    (Energy Economy Research Center, School of Business Administration, Henan Polytechnic University, Jiaozuo 454003, China)

  • Qing Gao

    (Energy Economy Research Center, School of Business Administration, Henan Polytechnic University, Jiaozuo 454003, China)

  • Shanshan Li

    (School of Finance and Economics Administration, Henan Polytechnic University, Jiaozuo 454003, China)

Abstract

The rapid development of the new energy vehicle industry has resulted in a significant number of waste electric vehicle batteries (WEVBs) reaching the end of their useful life. The recycling of these batteries holds both economic and environmental value. As policy is a critical factor influencing the recycling of waste electric vehicle batteries, its role in the network warrants deeper investigation. Based on this, this study integrates both subsidy and penalty policy into the design of the waste electric vehicle battery reverse logistics network (RLN), aiming to examine the effects of single policy and policy combinations, thereby filling the research gap in the existing literature that predominantly focuses on single-policy perspectives. Considering multiple battery types, different recycling technologies, and uncertain recycling quantities and qualities, this study develops a fuzzy mixed-integer programming model to optimize cost and carbon emission. The fuzzy model is transformed into a deterministic equivalent form using expected intervals, expected values, and fuzzy chance-constrained programming. By normalizing and weighting the upper and lower bounds of the multi-objective functions, the model is transformed into a single-objective optimization problem. The effectiveness of the proposed model and solution method was validated through an empirical study on the construction of a waste electric vehicle battery reverse logistics network in Zhengzhou City. The experimental results demonstrate that combined policy outperforms single policy in balancing economic benefits and environmental protection. The results provide decision-making support for policymakers and industry stakeholders in optimizing reverse logistics networks for waste electric vehicle batteries.

Suggested Citation

  • Zhiqiang Fan & Xiaoxiao Li & Qing Gao & Shanshan Li, 2025. "Optimizing Reverse Logistics Network for Waste Electric Vehicle Batteries: The Impact Analysis of Chinese Government Subsidies and Penalties," Sustainability, MDPI, vol. 17(9), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3885-:d:1642609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Hao & Yichen Sun & Xueyun Mei & Yanjun Zhou, 2021. "Reverse Logistics Network Design of Electric Vehicle Batteries considering Recall Risk," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, August.
    2. Jiajing Fan & Hao Teng & Yibo Wang, 2022. "Research on Recycling Strategies for New Energy Vehicle Waste Power Batteries Based on Consumer Responsibility Awareness," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    3. Xiaodong Zhu & Wei Li, 2020. "The Pricing Strategy of Dual Recycling Channels for Power Batteries of New Energy Vehicles under Government Subsidies," Complexity, Hindawi, vol. 2020, pages 1-16, June.
    4. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    5. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    6. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menglin Zhan & Yan Chen, 2022. "Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    2. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    3. Zhiqiang Fan & Yifan Luo & Ningning Liang & Shanshan Li, 2023. "A Novel Sustainable Reverse Logistics Network Design for Electric Vehicle Batteries Considering Multi-Kind and Multi-Technology," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    4. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    5. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    7. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China," Energies, MDPI, vol. 11(10), pages 1-21, October.
    8. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    9. Sajjad Rahmanzadeh & Mir Saman Pishvaee & Kannan Govindan, 2023. "Emergence of open supply chain management: the role of open innovation in the future smart industry using digital twin network," Annals of Operations Research, Springer, vol. 329(1), pages 979-1007, October.
    10. Yan Shen & Zizhao Song & Tian Gao & Ji Ma, 2022. "Research on Closed-Loop Supply Chain Decision Making of Power Battery Considering Subsidy Transfer under EPR System," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    11. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    12. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    13. Kai Kang & Bing Qing Tan, 2025. "Multi-echelon reverse logistics network design in the context of circular economy: a Hong Kong case study," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    14. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    15. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    16. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    17. Bianca Ifeoma Chigbu & Ikechukwu Umejesi, 2024. "Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles," Resources, MDPI, vol. 13(12), pages 1-22, November.
    18. Tsao, Yu-Chung & Tesfaye Balo, Habtamu & Lee, Carmen Kar Hang, 2024. "Resilient and sustainable semiconductor supply chain network design under trade credit and uncertainty of supply and demand," International Journal of Production Economics, Elsevier, vol. 274(C).
    19. Khalili-Fard, Alireza & Hashemi, Mojgan & Bakhshi, Alireza & Yazdani, Maziar & Jolai, Fariborz & Aghsami, Amir, 2024. "Integrated relief pre-positioning and procurement planning considering non-governmental organizations support and perishable relief items in a humanitarian supply chain network," Omega, Elsevier, vol. 127(C).
    20. Esmaeil Akhondi-Bajegani & F. Jolai & S. Ali Torabi, 2024. "A new mathematical model for designing and improving the performance of a home health care logistics network," Annals of Operations Research, Springer, vol. 340(2), pages 1189-1220, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3885-:d:1642609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.