IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v256y2019ics0306261919316101.html
   My bibliography  Save this item

Assessing electric vehicle policy with region-specific carbon footprints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C).
  2. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
  3. Peng, Tianduo & Ren, Lei & Ou, Xunmin, 2023. "Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China," Energy, Elsevier, vol. 282(C).
  4. Verma, Ashima & Saikia, Tanmoy & Saikia, Pranaynil & Rakshit, Dibakar & Ugalde-Loo, Carlos E., 2023. "Thermal performance analysis and experimental verification of lithium-ion batteries for electric vehicle applications through optimized inclined mini-channels," Applied Energy, Elsevier, vol. 335(C).
  5. Cho, Hannah Hyunah & Strezov, Vladimir, 2021. "Comparative analysis of the environmental impacts of Australian thermal power stations using direct emission data and GIS integrated methods," Energy, Elsevier, vol. 231(C).
  6. Baidya, Durjoy & de Brito, Marco Antonio Rodrigues & Ghoreishi-Madiseh, Seyed Ali, 2020. "Techno-economic feasibility investigation of incorporating an energy storage with an exhaust heat recovery system for underground mines in cold climatic regions," Applied Energy, Elsevier, vol. 273(C).
  7. Safdari, Mojtaba & Ahmadi, Rouhollah & Sadeghzadeh, Sadegh, 2022. "Numerical and experimental investigation on electric vehicles battery thermal management under New European Driving Cycle," Applied Energy, Elsevier, vol. 315(C).
  8. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
  9. Yu Gan & Zifeng Lu & Xin He & Michael Wang & Amer Ahmad Amer, 2023. "Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
  10. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
  11. Haoyi Zhang & Fuquan Zhao & Han Hao & Zongwei Liu, 2023. "Life Cycle Emissions of Passenger Vehicles in China: A Sensitivity Analysis of Multiple Influencing Factors," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
  12. Lin, Boqiang & Shi, Lei, 2022. "Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles," Applied Energy, Elsevier, vol. 310(C).
  13. Marco Raugei, 2022. "Update on the Life-Cycle GHG Emissions of Passenger Vehicles: Literature Review and Harmonization," Energies, MDPI, vol. 15(19), pages 1-13, September.
  14. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
  15. Liu, Xiaoling & Sun, Xiaohua & Zheng, Hui & Huang, Dongdong, 2021. "Do policy incentives drive electric vehicle adoption? Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 49-62.
  16. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
  17. Diskin, David & Kuhr, Yonah & Ben-Hamo, Ido Yohai & Spatari, Sabrina & Tartakovsky, Leonid, 2023. "Environmental benefits of combined electro-thermo-chemical technology over battery-electric powertrains," Applied Energy, Elsevier, vol. 351(C).
  18. Singh, Udayan & Colosi, Lisa M., 2021. "The case for estimating carbon return on investment (CROI) for CCUS platforms," Applied Energy, Elsevier, vol. 285(C).
  19. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
  20. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
  21. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
  22. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
  23. Eugene Yin Cheung Wong & Danny Chi Kuen Ho & Stuart So & Chi-Wing Tsang & Eve Man Hin Chan, 2021. "Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
  24. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
  25. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
  26. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
  27. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
  28. Zhou, Chao-bo & Qi, Shao-zhou & Zhang, Ji-hong & Tang, Si-yan, 2021. "Potential Co-benefit effect analysis of orderly charging and discharging of electric vehicles in China," Energy, Elsevier, vol. 226(C).
  29. Vilaça, Mariana & Santos, Gonçalo & Oliveira, Mónica S.A. & Coelho, Margarida C. & Correia, Gonçalo H.A., 2022. "Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility," Applied Energy, Elsevier, vol. 310(C).
  30. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
  31. Sacchi, R. & Bauer, C. & Cox, B. & Mutel, C., 2022. "When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.