IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1639-d1619801.html
   My bibliography  Save this article

Comprehensive Analysis and Optimization of Day-Ahead Scheduling: Influence of Wind Power Generation and Electric Vehicle Flexibility

Author

Listed:
  • Guocheng Li

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Cong Wang

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Jian Zheng

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Zeguang Lu

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Zhongmei Zhao

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Jinglan Cui

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Shaocong Bi

    (State Grid Shandong Electric Power Company, Dezhou Power Supply Branch, Dezhou 253000, China)

  • Xinyu Gao

    (Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xiaohu Yang

    (Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

With an increasing global emphasis on reducing carbon emissions and enhancing energy efficiency, the rising popularity of electric vehicles (EVs) has played a pivotal role in facilitating the transition to electrification within transportation sectors. However, the variability in their charging behavior has posed challenges for grid loads. In this study, a day-ahead scheduling model is developed for an integrated energy system to assess the impact of various electric vehicle charging modes on energy economics during typical days in summer, winter, and transition seasons. Additionally, the influence of optimized charging strategies on increasing the utilization of renewable energy and enhancing the operational efficiency of the grid is explored. The findings reveal that the abandonment rates of wind and solar energy associated with the orderly charging mode are 0 during typical days in winter and summer but decrease by 64.83% during the transition seasons. Furthermore, the power purchased from the grid declines by 18.79%, 19.34%, and 53.31% across these seasonal conditions, in respective. Consequently, the total load cost associated with the ordered charging mode decreases by 29.69%, 25.96%, and 43.71%, respectively, for summer, winter, and transition seasons.

Suggested Citation

  • Guocheng Li & Cong Wang & Jian Zheng & Zeguang Lu & Zhongmei Zhao & Jinglan Cui & Shaocong Bi & Xinyu Gao & Xiaohu Yang, 2025. "Comprehensive Analysis and Optimization of Day-Ahead Scheduling: Influence of Wind Power Generation and Electric Vehicle Flexibility," Energies, MDPI, vol. 18(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1639-:d:1619801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Xu, Zhiwei & Hu, Zechun & Song, Yonghua & Zhao, Wei & Zhang, Yongwang, 2014. "Coordination of PEVs charging across multiple aggregators," Applied Energy, Elsevier, vol. 136(C), pages 582-589.
    3. Jicheng Liu & Fangqiu Xu & Shuaishuai Lin & Hua Cai & Suli Yan, 2018. "A Multi-Agent-Based Optimization Model for Microgrid Operation Using Dynamic Guiding Chaotic Search Particle Swarm Optimization," Energies, MDPI, vol. 11(12), pages 1-22, November.
    4. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    5. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    6. Liu, Bingchun & Lai, Mingzhao & Wang, Yajie & Wang, Yibo & Chen, Jiali & Song, Chengyuan, 2024. "Assessment of green hydrogen production by volatile renewable energy under different SSPs scenarios in China," Renewable Energy, Elsevier, vol. 235(C).
    7. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
    8. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    9. Juan-Carlos Cobos-Torres & Luis-Holguer Idrovo-Ortiz & Sandra Lucia Cobos-Mora & Vinicio Santillan, 2025. "Renewable Energies and Biochar: A Green Alternative for Reducing Carbon Footprints Using Tree Species from the Southern Andean Region of Ecuador," Energies, MDPI, vol. 18(5), pages 1-22, February.
    10. Cai, Sinan & Matsuhashi, Ryuji, 2022. "Optimal dispatching control of EV aggregators for load frequency control with high efficiency of EV utilization," Applied Energy, Elsevier, vol. 319(C).
    11. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    12. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    2. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    3. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    4. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    5. George S. Fernandez & Vijayakumar Krishnasamy & Selvakumar Kuppusamy & Jagabar S. Ali & Ziad M. Ali & Adel El-Shahat & Shady H. E. Abdel Aleem, 2020. "Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm," Energies, MDPI, vol. 13(23), pages 1-26, December.
    6. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
    7. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    8. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    10. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    11. Jorge García Álvarez & Miguel Ángel González & Camino Rodríguez Vela & Ramiro Varela, 2018. "Electric Vehicle Charging Scheduling by an Enhanced Artificial Bee Colony Algorithm," Energies, MDPI, vol. 11(10), pages 1-19, October.
    12. Fanrong Kong & Jianhui Jiang & Zhigang Ding & Junjie Hu & Weian Guo & Lei Wang, 2017. "A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm," Energies, MDPI, vol. 10(9), pages 1-18, September.
    13. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    14. Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).
    15. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    16. Chen, Jiahui & Wang, Fang & He, Xiaoyi & Liang, Xinyu & Huang, Junling & Zhang, Shaojun & Wu, Ye, 2022. "Emission mitigation potential from coordinated charging schemes for future private electric vehicles," Applied Energy, Elsevier, vol. 308(C).
    17. Leehter Yao & Zolboo Damiran & Wei Hong Lim, 2017. "Optimal Charging and Discharging Scheduling for Electric Vehicles in a Parking Station with Photovoltaic System and Energy Storage System," Energies, MDPI, vol. 10(4), pages 1-20, April.
    18. Lili Gong & Wu Cao & Kangli Liu & Jianfeng Zhao & Xiang Li, 2018. "Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network," Energies, MDPI, vol. 11(6), pages 1-16, May.
    19. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    20. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1639-:d:1619801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.