IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1373-d149432.html
   My bibliography  Save this article

Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network

Author

Listed:
  • Lili Gong

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Wu Cao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Kangli Liu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Jianfeng Zhao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Xiang Li

    (LiuZhou Power Supply Bureau, GuangXi Power Grid Co., Ltd., Liuzhou 545006, China)

Abstract

The large deployment of plug-in electric vehicles (PEVs) challenges the operation of the distribution network. Uncoordinated charging of PEVs will cause a heavy load burden at rush hour and lead to increased power loss and voltage fluctuation. To overcome these problems, a novel coordinated charging strategy which considers the moving characteristics of PEVs is proposed in this paper. Firstly, the concept of trip chain is introduced to analyze the spatial and temporal distribution of PEVs. Then, a stochastic optimization model for PEV charging is established to minimize the distribution network power loss (DNPL) and maximal voltage deviation (MVD). After that, the particle swarm optimization (PSO) algorithm with an embedded power flow program is adopted to solve the model, due to its simplicity and practicality. Last, the feasibility and efficiency of the proposed strategy is tested on the IEEE 33 distribution system. Simulation results show that the proposed charging strategy not only reduces power loss and the peak valley difference, but also improves voltage profile greatly.

Suggested Citation

  • Lili Gong & Wu Cao & Kangli Liu & Jianfeng Zhao & Xiang Li, 2018. "Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network," Energies, MDPI, vol. 11(6), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1373-:d:149432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Cococcioni, Marco & Pappalardo, Massimo & Sergeyev, Yaroslav D., 2018. "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 298-311.
    3. Israr Ullah & Rashid Ahmad & DoHyeun Kim, 2018. "A Prediction Mechanism of Energy Consumption in Residential Buildings Using Hidden Markov Model," Energies, MDPI, vol. 11(2), pages 1-20, February.
    4. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
    5. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
    2. Lidan Chen & Yao Zhang & Antonio Figueiredo, 2019. "Spatio-Temporal Model for Evaluating Demand Response Potential of Electric Vehicles in Power-Traffic Network," Energies, MDPI, vol. 12(10), pages 1-20, May.
    3. Junpeng Cai & Dewang Chen & Shixiong Jiang & Weijing Pan, 2020. "Dynamic-Area-Based Shortest-Path Algorithm for Intelligent Charging Guidance of Electric Vehicles," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    4. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    5. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    2. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    3. Jorge García Álvarez & Miguel Ángel González & Camino Rodríguez Vela & Ramiro Varela, 2018. "Electric Vehicle Charging Scheduling by an Enhanced Artificial Bee Colony Algorithm," Energies, MDPI, vol. 11(10), pages 1-19, October.
    4. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    5. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    6. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Soomin Woo & Zhe Fu & Elpiniki Apostolaki-Iosifidou & Timothy E. Lipman, 2021. "Economic and Environmental Benefits for Electricity Grids from Spatiotemporal Optimization of Electric Vehicle Charging," Energies, MDPI, vol. 14(24), pages 1-22, December.
    8. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    9. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    10. Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    11. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    12. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    13. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    14. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    15. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    16. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    17. Bagherzade, Shima & Hooshmand, Rahmat-Allah & Firouzmakan, Pouya & Khodabakhshian, Amin & Gholipour, Mehdi, 2019. "Stochastic parking energy pricing strategies to promote competition arena in an intelligent parking," Energy, Elsevier, vol. 188(C).
    18. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    19. Arpad Gellert & Stefan-Alexandru Precup & Alexandru Matei & Bogdan-Constantin Pirvu & Constantin-Bala Zamfirescu, 2022. "Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    20. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1373-:d:149432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.