IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7343-d410227.html
   My bibliography  Save this article

Dynamic-Area-Based Shortest-Path Algorithm for Intelligent Charging Guidance of Electric Vehicles

Author

Listed:
  • Junpeng Cai

    (Mathematics and Computer Science College of Fuzhou University, Fuzhou University, Fuzhou 350000, China)

  • Dewang Chen

    (Mathematics and Computer Science College of Fuzhou University, Fuzhou University, Fuzhou 350000, China)

  • Shixiong Jiang

    (Mathematics and Computer Science College of Fuzhou University, Fuzhou University, Fuzhou 350000, China)

  • Weijing Pan

    (Mathematics and Computer Science College of Fuzhou University, Fuzhou University, Fuzhou 350000, China)

Abstract

With the increasing popularization and competition of electric vehicles (EVs), EV users often have anxiety on their trip to find better charging stations with less travel distance. An intelligent charging guidance strategy and two algorithms were proposed to alleviate this problem. First, based on the next destination of EV users’ trip, the strategy established a dynamic-area model to match charging stations with users’ travel demand intelligently. In the dynamic area, the Dijkstra algorithm is used to find the charging station with the shortest trip. Then, the area extension algorithm and the charging station attribution algorithm were developed to improve the robustness of the dynamic area. The two algorithms can automatically adjust the area size according to the number of charging stations in the dynamic area to reduce the number of nodes traversed by the Dijkstra algorithm. Finally, simulation examples were used to verify the effectiveness of the proposed model and algorithms. The results showed that the proposed intelligent charging guidance strategy can meet the travel demand of users. It is a promising technique in smart cities to find better travel trips with less travel distance and less computed time.

Suggested Citation

  • Junpeng Cai & Dewang Chen & Shixiong Jiang & Weijing Pan, 2020. "Dynamic-Area-Based Shortest-Path Algorithm for Intelligent Charging Guidance of Electric Vehicles," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7343-:d:410227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    2. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    3. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    4. Bonges, Henry A. & Lusk, Anne C., 2016. "Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 63-73.
    5. Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    6. Yongxing Wang & Jun Bi & Chaoru Lu & Cong Ding, 2020. "Route Guidance Strategies for Electric Vehicles by Considering Stochastic Charging Demands in a Time-Varying Road Network," Energies, MDPI, vol. 13(9), pages 1-24, May.
    7. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    8. Lili Gong & Wu Cao & Kangli Liu & Jianfeng Zhao & Xiang Li, 2018. "Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network," Energies, MDPI, vol. 11(6), pages 1-16, May.
    9. Hadi Suyono & Mir Toufikur Rahman & Hazlie Mokhlis & Mohamadariff Othman & Hazlee Azil Illias & Hasmaini Mohamad, 2019. "Optimal Scheduling of Plug-in Electric Vehicle Charging Including Time-of-Use Tariff to Minimize Cost and System Stress," Energies, MDPI, vol. 12(8), pages 1-21, April.
    10. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    11. Masashi Miyagawa, 2009. "Optimal hierarchical system of a grid road network," Annals of Operations Research, Springer, vol. 172(1), pages 349-361, November.
    12. Haoming Liu & Wenqian Yin & Xiaoling Yuan & Man Niu, 2018. "Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station," Sustainability, MDPI, vol. 10(5), pages 1-20, April.
    13. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    14. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Rosik & Sławomir Goliszek & Tomasz Komornicki & Patryk Duma, 2021. "Forecast of the Impact of Electric Car Battery Performance and Infrastructural and Demographic Changes on Cumulative Accessibility for the Five Most Populous Cities in Poland," Energies, MDPI, vol. 14(24), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
    2. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    3. Dakic, Igor & Leclercq, Ludovic & Menendez, Monica, 2021. "On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 393-417.
    4. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    5. Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    6. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    7. Gao, Jiong & Ma, Shoufeng & Zou, Hongyang & Du, Huibin, 2023. "How does population agglomeration influence the adoption of new energy vehicles? Evidence from 290 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    9. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    10. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    11. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    12. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    13. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    14. Jin, Zhihua & Schmöcker, Jan-Dirk & Maadi, Saeed, 2019. "On the interaction between public transport demand, service quality and fare for social welfare optimisation," Research in Transportation Economics, Elsevier, vol. 76(C).
    15. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    16. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    17. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    18. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    19. Ramos Muñoz, Edgar & Jabbari, Faryar, 2020. "A decentralized, non-iterative smart protocol for workplace charging of battery electric vehicles," Applied Energy, Elsevier, vol. 272(C).
    20. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7343-:d:410227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.