IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p265-d198145.html
   My bibliography  Save this article

Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes

Author

Listed:
  • Tian Mao

    (State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Xin Zhang

    (School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore)

  • Baorong Zhou

    (State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China)

Abstract

Electric vehicles (EVs) are now attracting increasing interest from both industries and countries as an environmentally friendly and energy efficient mode of travel. Therefore, the EV charging and/or discharging issue has become an important challenge and research topic in power systems in recent years. An advanced and economic EV charging process, however, should employ smart scheduling, which depends on effective and robust algorithms. To that end, a comprehensive intelligent scatter search (ISS) algorithm within the frame of a basic scatter search has been designed with both unidirectional and bidirectional charging considered. The ISS structure also supports both a flexible and constant charging power rate by respectively employing filter-SQP (sequential quadratic programming) and mixed-integer SQP as local solvers with module control. The detailed design of ISS is presented and the objectives of smoothing the daily load profile and minimizing the charging cost have been tested. Compared with methods based on GS (global search), GA (genetic algorithm), and PSO (particle swarm optimization), the outcome-verified ISS can produce attractive results with a significantly short computational time. Moreover, to handle a large scale EV charging scenario, a hybrid method comprised of a GA and ISS approach has been further developed. Simulation results also verified its prominent performance, plus superbly low computational time.

Suggested Citation

  • Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:265-:d:198145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Sierpiński & Marcin Staniek & Marcin Jacek Kłos, 2020. "Decision Making Support for Local Authorities Choosing the Method for Siting of In-City EV Charging Stations," Energies, MDPI, vol. 13(18), pages 1-28, September.
    2. Chengyu Yang & Han Zhou & Ximing Chen & Jiejun Huang, 2024. "Demand Time Series Prediction of Stacked Long Short-Term Memory Electric Vehicle Charging Stations Based on Fused Attention Mechanism," Energies, MDPI, vol. 17(9), pages 1-17, April.
    3. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    4. Junpeng Cai & Dewang Chen & Shixiong Jiang & Weijing Pan, 2020. "Dynamic-Area-Based Shortest-Path Algorithm for Intelligent Charging Guidance of Electric Vehicles," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    5. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    7. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    8. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    3. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    4. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    5. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
    6. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    7. Ilham Naharudinsyah & Steffen Limmer, 2018. "Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market," Energies, MDPI, vol. 11(6), pages 1-12, June.
    8. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    9. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    10. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
    11. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    12. Muhammad Usman & Wajahat Ullah Khan Tareen & Adil Amin & Haider Ali & Inam Bari & Muhammad Sajid & Mehdi Seyedmahmoudian & Alex Stojcevski & Anzar Mahmood & Saad Mekhilef, 2021. "A Coordinated Charging Scheduling of Electric Vehicles Considering Optimal Charging Time for Network Power Loss Minimization," Energies, MDPI, vol. 14(17), pages 1-16, August.
    13. Perez-Diaz, Alvaro & Gerding, Enrico & McGroarty, Frank, 2018. "Coordination and payment mechanisms for electric vehicle aggregators," Applied Energy, Elsevier, vol. 212(C), pages 185-195.
    14. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    15. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    16. Héricles Eduardo Oliveira Farias & Camilo Alberto Sepulveda Rangel & Leonardo Weber Stringini & Luciane Neves Canha & Daniel Pegoraro Bertineti & Wagner da Silva Brignol & Zeno Iensen Nadal, 2021. "Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(5), pages 1-27, March.
    17. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    18. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    19. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    20. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:265-:d:198145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.