IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p57-d1303916.html
   My bibliography  Save this article

Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization

Author

Listed:
  • Lingling Hu

    (School of Mechanical and Automotive, Guangxi University of Science and Technology, Liuzhou 545006, China)

  • Junming Zhou

    (School of Mechanical and Automotive, Guangxi University of Science and Technology, Liuzhou 545006, China)

  • Feng Jiang

    (School of Mechanical and Automotive, Guangxi University of Science and Technology, Liuzhou 545006, China
    Guangxi Huihuang Langjie Environmental Protection Technology Co., Ltd., Beihai 536000, China
    Institute for Artificial Intelligence, Peking University, Beijing 100871, China)

  • Guangming Xie

    (Institute for Artificial Intelligence, Peking University, Beijing 100871, China)

  • Jie Hu

    (School of Mechanical and Automotive, Guangxi University of Science and Technology, Liuzhou 545006, China)

  • Qinglie Mo

    (School of Mechanical and Automotive, Guangxi University of Science and Technology, Liuzhou 545006, China)

Abstract

Many electric vehicles connected to the grid will lead to problems such as poor stability of power grid generation. The key to solving these problems is to propose an efficient, stable, and economical valley-filling charging scheme for electric vehicles and grid users in the vehicle network system. Firstly, the convex optimization theory is used to make the grid achieve the optimization effect of valley filling. On this basis, the electricity price scheme with a time-varying coefficient as the variable is proposed to meet the single objective optimization of EV charging cost optimization, and its degree of influence on the grid valley-filling effect is analyzed. Secondly, based on the competitive relationship between EV charging cost and battery life, the P2D model is simplified and analyzed, and the attenuation law of battery capacity is quantitatively described. The multi-objective optimization problem is established to express in a Pareto matrix. Finally, the compatibility between the multi-objective optimization and grid valley charging is analyzed. The simulation results show that: (1) The convexity electricity price scheme can satisfy the requirements of various retention rates to achieve the valley-filling effect; (2) The filling effect is satisfied with the electricity price scheme that minimizes the charging cost, and the key factors affecting the filling effect are analyzed; (3) The multi-objective optimization scheme with charging cost and battery life is compatible with the valley-filling effect.

Suggested Citation

  • Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:57-:d:1303916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Zhichun & Yang, Fan & Min, Huaidong & Tian, Hao & Hu, Wei & Liu, Jian & Eghbalian, Nasrin, 2023. "Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources," Energy, Elsevier, vol. 263(PA).
    2. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    3. Gu, Yuxuan & Wang, Jianxiao & Chen, Yuanbo & Xiao, Wei & Deng, Zhongwei & Chen, Qixin, 2023. "A simplified electro-chemical lithium-ion battery model applicable for in situ monitoring and online control," Energy, Elsevier, vol. 264(C).
    4. Kris Scicluna & Brian Azzopardi & Kurt Spiteri, 2023. "Power Quality Analysis for Light-Duty Electric Vehicles: A Case Study in Malta," Energies, MDPI, vol. 16(15), pages 1-13, July.
    5. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.
    6. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    7. Dusan Medved & Lubomir Bena & Maksym Oliinyk & Jaroslav Dzmura & Damian Mazur & David Martinko, 2023. "Assessing the Effects of Smart Parking Infrastructure on the Electrical Power System," Energies, MDPI, vol. 16(14), pages 1-16, July.
    8. Welzel, Fynn & Klinck, Carl-Friedrich & Pohlmann, Yannick & Bednarczyk, Mats, 2021. "Grid and user-optimized planning of charging processes of an electric vehicle fleet using a quantitative optimization model," Applied Energy, Elsevier, vol. 290(C).
    9. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    10. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    2. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    3. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    4. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    5. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    6. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    7. Tadeusz Olejarz & Dominika Siwiec & Andrzej Pacana, 2022. "Method of Qualitative–Environmental Choice of Devices Converting Green Energy," Energies, MDPI, vol. 15(23), pages 1-22, November.
    8. Eva Gerold & Helmut Antrekowitsch, 2024. "Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    9. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    10. Tang, Chong & Liu, Mingbo & Xie, Min & Dong, Ping & Zhu, Jianquan & Lin, Shunjiang, 2021. "A single-leader and multiple-follower stackelberg model for the look-ahead dispatch of plug-in electric buses in multiple microgrids," Energy, Elsevier, vol. 214(C).
    11. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    12. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    13. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    15. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    16. Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    17. Li, Yipu & Su, Hao & Zhou, Yun & Chen, Lixia & Shi, Yiwei & Li, Hengjie & Feng, Donghan, 2023. "Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load," Energy, Elsevier, vol. 268(C).
    18. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    19. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    20. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:57-:d:1303916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.