IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6384-d455449.html
   My bibliography  Save this article

Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm

Author

Listed:
  • George S. Fernandez

    (Department of Electrical and Electronics Engineering, SRM University, Kattankulathur 603-203, India)

  • Vijayakumar Krishnasamy

    (Department of Electrical and Electronics Engineering, SRM University, Kattankulathur 603-203, India)

  • Selvakumar Kuppusamy

    (Department of Electrical and Electronics Engineering, SRM University, Kattankulathur 603-203, India)

  • Jagabar S. Ali

    (Department of Electrical and Electronics Engineering, SRM University, Kattankulathur 603-203, India
    Renewable Energy Lab (REL), Department of Communication and Networks, College of Engineering, Prince Sultan University (PSU), Riyadh 11586, Saudi Arabia)

  • Ziad M. Ali

    (Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia
    Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Adel El-Shahat

    (Department of Electrical and Computer Engineering, Georgia Southern University (GSU), Statesboro, GA 30460-7995, USA)

  • Shady H. E. Abdel Aleem

    (Power Quality Department, ETA Electric Company, El Omraniya, Giza 12111, Egypt)

Abstract

In this paper, the optimal dynamic scheduling of electric vehicles (EVs) in a parking lot (PL) is proposed to minimize the charging cost. In static scheduling, the PL operator can make the optimal scheduling if the demand, arrival, and departure time of EVs are known well in advance. If not, a static charging scheme is not feasible. Therefore, dynamic charging is preferred. A dynamic scheduling scheme means the EVs may come and go at any time, i.e., EVs’ arrival is dynamic in nature. The EVs may come to the PL with prior appointments or not. Therefore, a PL operator requires a mechanism to charge the EVs that arrive with or without reservation, and the demand for EVs is unknown to the PL operator. In general, the PL uses the first-in-first serve (FIFS) method for charging the EVs. The well-known optimization techniques such as particle swarm optimization and shuffled frog leaping algorithms are used for the EVs’ dynamic scheduling scheme to minimize the grid’s charging cost. Moreover, a microgrid is also considered to reduce the charging cost further. The results obtained show the effectiveness of the proposed solution methods.

Suggested Citation

  • George S. Fernandez & Vijayakumar Krishnasamy & Selvakumar Kuppusamy & Jagabar S. Ali & Ziad M. Ali & Adel El-Shahat & Shady H. E. Abdel Aleem, 2020. "Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm," Energies, MDPI, vol. 13(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6384-:d:455449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel Aleem, Shady H.E. & Zobaa, Ahmed F. & Abdel Mageed, Hala M., 2015. "Assessment of energy credits for the enhancement of the Egyptian Green Pyramid Rating System," Energy Policy, Elsevier, vol. 87(C), pages 407-416.
    2. Xu, Zhiwei & Hu, Zechun & Song, Yonghua & Zhao, Wei & Zhang, Yongwang, 2014. "Coordination of PEVs charging across multiple aggregators," Applied Energy, Elsevier, vol. 136(C), pages 582-589.
    3. Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
    4. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    5. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Hsaini & Mounir Ghogho & My El Hassan Charaf, 2022. "An OCPP-Based Approach for Electric Vehicle Charging Management," Energies, MDPI, vol. 15(18), pages 1-14, September.
    2. Suchitra Dayalan & Sheikh Suhaib Gul & Rajarajeswari Rathinam & George Fernandez Savari & Shady H. E. Abdel Aleem & Mohamed A. Mohamed & Ziad M. Ali, 2022. "Multi-Stage Incentive-Based Demand Response Using a Novel Stackelberg–Particle Swarm Optimization," Sustainability, MDPI, vol. 14(17), pages 1-25, September.
    3. Emad M. Ahmed & Rajarajeswari Rathinam & Suchitra Dayalan & George S. Fernandez & Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar, 2021. "A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    4. Cong Chen & Yibai Li & Guangqiao Cao & Jinlong Zhang, 2023. "Research on Dynamic Scheduling Model of Plant Protection UAV Based on Levy Simulated Annealing Algorithm," Sustainability, MDPI, vol. 15(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    2. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    3. Fanrong Kong & Jianhui Jiang & Zhigang Ding & Junjie Hu & Weian Guo & Lei Wang, 2017. "A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm," Energies, MDPI, vol. 10(9), pages 1-18, September.
    4. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Chul-Hwan Kim, 2018. "A Bi-Level EV Aggregator Coordination Scheme for Load Variance Minimization with Renewable Energy Penetration Adaptability," Energies, MDPI, vol. 11(10), pages 1-28, October.
    5. Leehter Yao & Zolboo Damiran & Wei Hong Lim, 2017. "Optimal Charging and Discharging Scheduling for Electric Vehicles in a Parking Station with Photovoltaic System and Energy Storage System," Energies, MDPI, vol. 10(4), pages 1-20, April.
    6. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    7. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    8. Raja S, Charles & Kumar N M, Vijaya & J, Senthil kumar & Nesamalar J, Jeslin Drusila, 2021. "Enhancing system reliability by optimally integrating PHEV charging station and renewable distributed generators: A Bi-Level programming approach," Energy, Elsevier, vol. 229(C).
    9. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    10. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    11. Premaratne Samaranayake & Upul Gunawardana & Michael Stokoe, 2023. "Kerbside Parking Assessment Using a Simulation Modelling Approach for Infrastructure Planning—A Metropolitan City Case Study," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    12. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    13. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    15. Premaratne Samaranayake & Upul Gunawardana, 2022. "Parking Assessment in the Context of Growing Construction Activity and Infrastructure Changes: Simulation of Impact Scenarios," Sustainability, MDPI, vol. 14(9), pages 1-28, April.
    16. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    17. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    18. Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
    19. Dong, Yunxuan & Wang, Jing & Xiao, Ling & Fu, Tonglin, 2021. "Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target," Energy, Elsevier, vol. 215(PB).
    20. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6384-:d:455449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.