IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2135-2144.html
   My bibliography  Save this article

Optimal scheduling of distributed energy resources in smart grids: A complementarity approach

Author

Listed:
  • Aghajani, Saemeh
  • Kalantar, Mohsen

Abstract

Utilizing electric vehicles in transportation systems has emerged as a promising approach for reducing amount of fossil fuels. In order to provide a procedure to derive the optimal charging/discharging strategy of these vehicles, this paper proposes a bilevel approach in which distribution system operator and parking lot operator are its two main levels. In the upper-level, the objective is minimizing distribution system operator cost considering all available resources in the system including renewable generation and parking lot and in the lower-level the parking minimizes its own cost. In addition, the renewable generation uncertainty is covered through spinning reserve provided by both parking lot and distributed generations. The proposed method is able to strategically determine the amount of energy and reserve interacted between two operators through integrated operation of all the resources in the network. The bilevel problem is reduced to a single level optimization problem by using of a mathematical problem with equilibrium constraints. The results show that the use of parking lot in reserve scheduling changes the scheduling of other available resources in the system. Moreover, by implementing the proposed model, the global optimal performance for distribution system operator with various interactions can be achieved by the equilibrium point.

Suggested Citation

  • Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2135-2144
    DOI: 10.1016/j.energy.2017.11.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    2. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    3. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
    4. Sarabi, Siyamak & Davigny, Arnaud & Courtecuisse, Vincent & Riffonneau, Yann & Robyns, Benoît, 2016. "Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids," Applied Energy, Elsevier, vol. 171(C), pages 523-540.
    5. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.
    6. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    7. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    8. Huang, Shoujun & Yang, Jun & Li, Shanjun, 2017. "Black-Scholes option pricing strategy and risk-averse coordination for designing vehicle-to-grid reserve contracts," Energy, Elsevier, vol. 137(C), pages 325-335.
    9. Rahbari, Omid & Vafaeipour, Majid & Omar, Noshin & Rosen, Marc A. & Hegazy, Omar & Timmermans, Jean-Marc & Heibati, Seyedmohammadreza & Bossche, Peter Van Den, 2017. "An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids," Energy, Elsevier, vol. 134(C), pages 1053-1067.
    10. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    2. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Vignesh & Das, Tapas K., 2019. "A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes," Energy, Elsevier, vol. 167(C), pages 1266-1277.
    2. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    3. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Yang, Linfeng & Zhang, Chen & Jian, Jinbao & Meng, Ke & Xu, Yan & Dong, Zhaoyang, 2017. "A novel projected two-binary-variable formulation for unit commitment in power systems," Applied Energy, Elsevier, vol. 187(C), pages 732-745.
    5. Sui, Quan & Zhang, Rui & Wu, Chuantao & Wei, Fanrong & Lin, Xiangning & Li, Zhengtian, 2020. "Stochastic scheduling of an electric vessel-based energy management system in pelagic clustering islands," Applied Energy, Elsevier, vol. 259(C).
    6. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    7. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Chul-Hwan Kim, 2018. "A Bi-Level EV Aggregator Coordination Scheme for Load Variance Minimization with Renewable Energy Penetration Adaptability," Energies, MDPI, vol. 11(10), pages 1-28, October.
    8. Sharma, S. & Jain, Prerna, 2023. "Risk-averse integrated DR and dynamic V2G scheduling of parking lot operator for enhanced market efficiency," Energy, Elsevier, vol. 275(C).
    9. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
    10. Antonio Jiménez-Marín & Juan Pérez-Ruiz, 2021. "A Robust Optimization Model to the Day-Ahead Operation of an Electric Vehicle Aggregator Providing Reliable Reserve," Energies, MDPI, vol. 14(22), pages 1-18, November.
    11. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    12. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    13. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    14. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    15. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    16. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    17. Faria, Marta V. & Baptista, Patrícia C. & Farias, Tiago L., 2014. "Electric vehicle parking in European and American context: Economic, energy and environmental analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 110-121.
    18. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    19. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    20. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2135-2144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.