IDEAS home Printed from https://ideas.repec.org/r/ecb/ecbwps/20091051.html
   My bibliography  Save this item

Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
  2. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
  3. Irma Hindrayanto & Siem Jan Koopman & Jasper de Winter, 2014. "Nowcasting and forecasting economic growth in the euro area using principal components," DNB Working Papers 415, Netherlands Central Bank, Research Department.
  4. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
  5. Ruiz, Esther & Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
  6. repec:dau:papers:123456789/10079 is not listed on IDEAS
  7. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
  8. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Eric Hillebrand & Siem Jan Koopman (ed.),Dynamic Factor Models, volume 35, pages 401-434, Emerald Publishing Ltd.
  9. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
  10. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
  11. Müller-Kademann Christian, 2015. "Internal Validation of Temporal Disaggregation: A Cloud Chamber Approach," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(3), pages 298-319, June.
  12. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
  13. repec:dau:papers:123456789/11692 is not listed on IDEAS
  14. repec:ipg:wpaper:2014-414 is not listed on IDEAS
  15. Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
  16. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
  17. Bellégo, C. & Ferrara, L., 2012. "Macro-financial linkages and business cycles: A factor-augmented probit approach," Economic Modelling, Elsevier, vol. 29(5), pages 1793-1797.
  18. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
  19. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
  20. Bessonovs, Andrejs, 2011. "GDP Modelling with Factor Model: an Impact of Nested Data on Forecasting Accuracy," MPRA Paper 30211, University Library of Munich, Germany.
  21. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
  22. Alvarez, Rocio & Camacho, Maximo & Pérez-Quirós, Gabriel, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
  23. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  24. Germán López, 2015. "Forecast Accuracy of Small and Large Scale Dynamic Factor Models in Developing Economies," Working Papers. Serie AD 2015-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  25. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
  26. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
  27. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
  28. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
  29. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
  30. Bessonovs, Andrejs, 2010. "Faktoru modeļu agregēta un dezagregēta pieeja IKP prognožu precizitātes mērīšanā [Measuring GDP forecasting accuracy using factor models: aggregated vs. disaggregated approach]," MPRA Paper 30386, University Library of Munich, Germany.
  31. Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
  32. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  33. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
  34. Solikin M. Juhro & Bernard Njindan Iyke, 2019. "Forecasting Indonesian Inflation Within An Inflation-Targeting Framework: Do Large-Scale Models Pay Off?," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(4), pages 423-436.
  35. repec:dau:papers:123456789/11663 is not listed on IDEAS
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.