IDEAS home Printed from https://ideas.repec.org/r/bla/jtsera/v22y2001i2p197-220.html

Conditional Heteroskedasticity Driven by Hidden Markov Chains

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
  2. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
  3. Kwon, Dream & Lee, Oesook, 2024. "The functional central limit theorem for Markov-switching GARCH model," Economics Letters, Elsevier, vol. 238(C).
  4. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
  5. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
  6. Hassan Heidari & Arash Refah-Kahriz & Nayyer Hashemi Berenjabadi, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250.
  7. Nazim Regnard & Jean‐Michel Zakoïan, 2010. "Structure and estimation of a class of nonstationary yet nonexplosive GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 348-364, September.
  8. Maddalena Cavicchioli, 2021. "Statistical inference for mixture GARCH models with financial application," Computational Statistics, Springer, vol. 36(4), pages 2615-2642, December.
  9. Krämer, Walter, 2008. "Long memory with Markov-Switching GARCH," Economics Letters, Elsevier, vol. 99(2), pages 390-392, May.
  10. repec:dau:papers:123456789/2285 is not listed on IDEAS
  11. Anita Behme, 2024. "Volatility modeling in a Markovian environment: Two Ornstein-Uhlenbeck-related approaches," Papers 2407.05866, arXiv.org.
  12. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
  13. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
  14. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
  15. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
  16. Jean‐Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
  17. Chaojun Li & Yan Liu, 2020. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities," Papers 2010.04930, arXiv.org, revised Dec 2021.
  18. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
  19. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
  20. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
  21. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  22. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
  23. Kramer, Walter & Azamo, Baudouin Tameze, 2007. "Structural change and estimated persistence in the GARCH(1,1)-model," Economics Letters, Elsevier, vol. 97(1), pages 17-23, October.
  24. Paul Doukhan & Konstantinos Fokianos & Joseph Rynkiewicz, 2021. "Mixtures of Nonlinear Poisson Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 107-135, January.
  25. Azamo, Baudouin Tameze & Krämer, Walter, 2006. "Structural Change and long memory in the GARCH(1,1)-model," Technical Reports 2006,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  26. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
  27. Yanlin Shi, 2023. "A simulation study on the Markov regime-switching zero-drift GARCH model," Annals of Operations Research, Springer, vol. 330(1), pages 1-20, November.
  28. Mihaela Craioveanu & Eric Hillebrand, 2012. "Level changes in volatility models," Annals of Finance, Springer, vol. 8(2), pages 277-308, May.
  29. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
  30. Maciej Augustyniak & Mathieu Boudreault & Manuel Morales, 2018. "Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 165-188, March.
  31. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
  32. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
  33. repec:bgu:wpaper:0605 is not listed on IDEAS
  34. Francq, Christian & ZakoI¨an, Jean-Michel, 2005. "The L2-structures of standard and switching-regime GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1557-1582, September.
  35. Wee, Damien C.H. & Chen, Feng & Dunsmuir, William T.M., 2022. "Likelihood inference for Markov switching GARCH(1,1) models using sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 21(C), pages 50-68.
  36. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
  37. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
  38. Lisandro Javier Fermin & Ricardo Rios & Luis Angel Rodriguez, 2017. "A Robbins–Monro Algorithm for Non-Parametric Estimation of NAR Process with Markov Switching: Consistency," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 809-837, November.
  39. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.