IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i3p549-573.html

Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach

Author

Listed:
  • Giampiero M. Gallo
  • Edoardo Otranto

Abstract

Volatility in financial markets is characterized by alternating persistent turmoil and quiet periods, but also by a slowly varying average level. This slow moving component keeps open the question of whether some of its features are better represented as abrupt or smooth changes between local averages of volatility. We provide a new class of models with a set of parameters subject to abrupt changes in regime (Markov switching) and another set subject to smooth transition changes. These models capture the possibility that regimes may overlap with one another (fuzzy). The empirical application is carried out on the volatility of four US indices. It shows that the flexibility of the new model enables a better overall performance over either Markov switching or smooth transitions and provides a local average volatility measure as a parametric estimation of the low frequency component.

Suggested Citation

  • Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:549-573
    DOI: 10.1111/rssc.12253
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12253
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
    2. Edoardo Otranto & Luca Scaffidi Domianello, 2025. "On using fuzzy clustering for detecting the number of states in Markov switching models," Annals of Operations Research, Springer, vol. 349(3), pages 1855-1890, June.
    3. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
    4. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2025. "A beta prime ARMA model for positive time series," MPRA Paper 123873, University Library of Munich, Germany.
    5. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    6. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    7. Pietro Coretto & Michele La Rocca & Giuseppe Storti, 2020. "Improving Many Volatility Forecasts Using Cross-Sectional Volatility Clusters," JRFM, MDPI, vol. 13(4), pages 1-23, March.
    8. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
    9. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:549-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.