IDEAS home Printed from https://ideas.repec.org/p/zur/iewwpx/445.html
   My bibliography  Save this paper

Fund-of-funds construction by statistical multiple testing methods

Author

Listed:
  • Michael Wolf
  • Dan Wunderli

Abstract

Fund-of-funds (FoF) managers face the task of selecting a (relatively) small number of hedge funds from a large universe of candidate funds. We analyse whether such a selection can be successfully achieved by looking at the track records of the available funds alone, using advanced statistical techniques. In particular, at a given point in time, we determine which funds significantly outperform a given benchmark while, crucially, accouting for the fact that a large number of funds are examined at the same time. This is achieved by employing so-called multiple testing methods. Then, the equal-weighted or the global minimum variance portfolio of the outperforming funds is held for one year, after which the selection process is repeated. When backtesting this strategy on two particular hedge fund universes, we find that the resulting FoF portfolios have attractive return properties compared to the 1/N portfolio (that is, simply equal-weighting all the available funds) but also when compared to two investable hedge fund indices.

Suggested Citation

  • Michael Wolf & Dan Wunderli, 2009. "Fund-of-funds construction by statistical multiple testing methods," IEW - Working Papers 445, Institute for Empirical Research in Economics - University of Zurich.
  • Handle: RePEc:zur:iewwpx:445
    as

    Download full text from publisher

    File URL: http://www.econ.uzh.ch/static/wp_iew/iewwp445.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    4. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    5. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    6. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(02), pages 404-447, April.
    7. Kosowski, Robert & Naik, Narayan Y. & Teo, Melvyn, 2007. "Do hedge funds deliver alpha? A Bayesian and bootstrap analysis," Journal of Financial Economics, Elsevier, vol. 84(1), pages 229-264, April.
    8. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enareta Kurtbegu & Juliana Caicedo-llano, 2014. "European equity fund managers: luck or skill?!," Economics Bulletin, AccessEcon, vol. 34(4), pages 2340-2350.

    More about this item

    Keywords

    Bootstrap; familywise error rate; fund-of-funds; performance evaluation;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:iewwpx:445. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marita Kieser). General contact details of provider: http://edirc.repec.org/data/seizhch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.