IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200550.html
   My bibliography  Save this paper

Testing the parametric form of the volatility in continuous time diffusion models: an empirical process approach

Author

Listed:
  • Dette, Holger
  • Podolskij, Mark

Abstract

In this paper we present two new tests for the parametric form of the variance function in difusion processes dXt = b(t;Xt)+ó(t;Xt)dWt: Our approach is based on two stochastic processes of the integrated volatility. We prove weak convergence of these processes to centered processes whose conditional distributions given the process (Xt)t2[0;1] are Gaussian. In the special case of testing for a constant volatility the limiting process is the standard Brownian bridge in both cases. As a consequence an asymptotic distribution free test (for the problem of testing for homoscedasticity) and bootstrap tests (for the problem of testing for a general parametric form) can easily be implemented. It is demonstrated that the new tests are more powerful with respect to Pitman alternatives than the currently available procedures for this problem. The asymptotic advantages of the new approach are also observed for realistic sample sizes in a simulation study, where the finite sample properties of a Kolmogorov-Smirnov test are investigated.

Suggested Citation

  • Dette, Holger & Podolskij, Mark, 2005. "Testing the parametric form of the volatility in continuous time diffusion models: an empirical process approach," Technical Reports 2005,50, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200550
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22643/1/tr50-05.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    4. Barndorff-Nielsen, Ole Eiler & Graversen, Svend Erik & Jacod, Jean & Podolskij, Mark, 2004. "A central limit theorem for realised power and bipower variations of continuous semimartingales," Technical Reports 2004,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    8. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    9. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Podolskij & Daniel Ziggel, 2007. "A Range-Based Test for the Parametric Form of the Volatility in Diffusion Models," CREATES Research Papers 2007-26, Department of Economics and Business Economics, Aarhus University.
    2. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    3. Dette, Holger & Podolskij, Mark, 2008. "Testing the parametric form of the volatility in continuous time diffusion models--a stochastic process approach," Journal of Econometrics, Elsevier, vol. 143(1), pages 56-73, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200550. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/isdorde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.