IDEAS home Printed from https://ideas.repec.org/p/zbw/kitwps/52.html
   My bibliography  Save this paper

On portfolio risk estimation

Author

Listed:
  • Safarian, Mher

Abstract

[Statement of the problem] The present work considers the problem of investment portfolio risk estimation, including dynamic adjustment for each new transaction. Any Bank portfolio has a complex structure. It consists of stocks, bonds and a set of derivative securities. A portion of bonds and loans is riskless. For some of these assets, the methods offered cannot be applied without additional consideration of the term structure of interest rates and credit risks features. The risk estimation of this part of the portfolio containing some peculiar financial tools represents a separate issue, solving which exceeds the limits of the present research. We use as an estimation of a portfolio risk the amount of probable losses that can be sustained in case of a complete asset sale, related to current market value of these assets. The investment portfolio includes a number of shares, sale of which can significantly affect the market for a brief period of time, making the calculated estimation of risk insolvent. Thus it is necessary to estimate the quantity of shares that can be sold without having a material influence on the prices dynamics. Knowing this size, it is easy to calculate a time interval during which this portfolio can be sold. Definition of the stability of the concrete market is directly concerned with its specificity. This represents a separate practical problem, which is not considered in the submitted paper. Consequently, for a portfolio risk calculation, it is necessary to estimate dynamics of price behaviour for the time period during which controllable realization of portfolio assets is possible. Such an approach is described in many papers where estimation of risk is based on studying prices dynamics of stocks included in a portfolio (VaR - 'RiskMetrics', RiskManagement+). However, forecasting such processes represents a complicated problem itself. For example, on NASDAQ the prices of the most liquid stocks have large volatility. Deviation from average value of a stock price can run up to several percent even on ordinary days. To circumvent this problem, a new approach, which is not considered earlier, is offered in the given research.

Suggested Citation

  • Safarian, Mher, 2013. "On portfolio risk estimation," Working Paper Series in Economics 52, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  • Handle: RePEc:zbw:kitwps:52
    DOI: 10.5445/IR/1000037500
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/88423/1/773885064.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000037500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Brooks, C. & Clare, A.D. & Dalle Molle, J.W. & Persand, G., 2005. "A comparison of extreme value theory approaches for determining value at risk," Journal of Empirical Finance, Elsevier, vol. 12(2), pages 339-352, March.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    5. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    6. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    7. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    8. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(4), pages 539-569, August.
    9. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    10. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Hagerman, Robert L, 1978. "More Evidence on the Distribution of Security Returns," Journal of Finance, American Finance Association, vol. 33(4), pages 1213-1221, September.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    2. Ekaterina Smetanina, 2017. "Real-Time GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 561-601.
    3. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    5. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    6. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    7. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    8. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    9. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    12. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    13. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    14. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    15. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
    16. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    17. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    18. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    19. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    20. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitwps:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwkitde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.