IDEAS home Printed from https://ideas.repec.org/p/zbw/hwwirp/117.html
   My bibliography  Save this paper

Policy options for climate policy in the residential building sector: The case of Germany

Author

Listed:
  • Schröer, Sebastian

Abstract

In order to achieve the climate protection goals in the building sector, a higher rate of building refurbishment is necessary to improve the energy standard of residential building stock in the European Union. Although subsidisation seems to be necessary, optimal measures concerning cost effectiveness are unclear. Using a stylised model of the German residential building stock, we analyse different refurbishment measures by simulating every relevant investment until 2030. In particular, we compare two different options that are relevant for political measures: first, comprehensive refurbishments that are expensive but achieve the greatest reductions in energy consumption and GHG emissions and second, partial refurbishments which include only low-cost improvements but can be achieved on a wide scale. We conclude that comprehensive refurbishments will require the least amount of investment costs per ton GHG emissions and provide the highest reductions in energy consumption in 2030. Hence, partial refurbishments are never optimal. However, in terms of cumulated GHG emissions in the period considered, the difference between both options is very small. This is due to their different dynamics: comprehensive refurbishments achieve fewer results in the first years but catch up quickly, which means that the higher the refurbishment rate the higher the advantage of comprehensive refurbishments.

Suggested Citation

  • Schröer, Sebastian, 2012. "Policy options for climate policy in the residential building sector: The case of Germany," HWWI Research Papers 117, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwirp:117
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/55863/1/688145434.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.
    2. Achtnicht, Martin, 2011. "Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany," Ecological Economics, Elsevier, vol. 70(11), pages 2191-2200, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friege, Jonas & Chappin, Emile, 2014. "Modelling decisions on energy-efficient renovations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 196-208.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Hermann Buslei, 2023. "Schätzungen der langfristigen Preiselastizitäten der Energienachfrage für Heizung und Verkehr - eine Übersicht mit Schwerpunkt Deutschland," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk194, Enero-Abr.
    4. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    5. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    6. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Oberst, Christian & Harmsen - van Hout, Marjolein J. W., 2017. "Adoption and Cooperation Decisions in Sustainable Energy Infrastructure: Evidence from a Sequential Choice Experiment in Germany," FCN Working Papers 14/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    9. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
    10. Volland, Benjamin, 2017. "The role of risk and trust attitudes in explaining residential energy demand: Evidence from the United Kingdom," Ecological Economics, Elsevier, vol. 132(C), pages 14-30.
    11. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2013. "Household formation and residential energy demand: Evidence from Japan," Kiel Working Papers 1836, Kiel Institute for the World Economy (IfW Kiel).
    12. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    13. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    14. Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
    15. Sagebiel, Julian & Müller, Jakob R. & Rommel, Jens, 2013. "Are Consumers Willing to Pay More for Electricity from Cooperatives? Results from an Online Choice Experiment in Germany," MPRA Paper 52385, University Library of Munich, Germany.
    16. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
    17. Yildiz, Özgür & Rommel, Jens & Debor, Sarah & Holstenkamp, Lars & Mey, Franziska & Müller, Jakob R. & Radtke, Jörg & Rognli, Judith, 2014. "Research Perspectives on Renewable Energy Cooperatives in Germany: Empirical Insights and Theoretical Lenses," MPRA Paper 55931, University Library of Munich, Germany.
    18. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.
    19. Dieckhoener, Caroline & Hecking, Harald, 2012. "Greenhouse Gas Abatement Cost Curves of the Residential Heating Market – a Microeconomic Approach," EWI Working Papers 2012-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.

    More about this item

    Keywords

    residential building sector; refurbishment; climate policy; energy saving; policy scenarios;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • H30 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwirp:117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.