IDEAS home Printed from https://ideas.repec.org/p/xrp/wpaper/xreap2011-13.html
   My bibliography  Save this paper

A logistic regression approach to estimating customer profit loss due to lapses in insurance

Author

Listed:
  • Montserrat Guillén

    (Departament d'Econometria, Estadística i Economia Espanyola. RFA-IREA. University of Barcelona. Spain)

  • Ana María Pérez-Marín

    (Departament d'Econometria, Estadística i Economia Espanyola. RFA-IREA. University of Barcelona. Spain)

  • Montserrat Guillén

    (Departament d'Econometria, Estadística i Economia Espanyola. RFA-IREA. University of Barcelona. Spain)

Abstract

This article focuses on business risk management in the insurance industry. A methodology for estimating the profit loss caused by each customer in the portfolio due to policy cancellation is proposed. Using data from a European insurance company, customer behaviour over time is analyzed in order to estimate the probability of policy cancelation and the resulting potential profit loss due to cancellation. Customers may have up to two different lines of business contracts: motor insurance and other diverse insurance (such as, home contents, life or accident insurance). Implications for understanding customer cancellation behaviour as the core of business risk management are outlined.

Suggested Citation

  • Montserrat Guillén & Ana María Pérez-Marín & Montserrat Guillén, 2011. "A logistic regression approach to estimating customer profit loss due to lapses in insurance," Working Papers XREAP2011-13, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2011.
  • Handle: RePEc:xrp:wpaper:xreap2011-13
    as

    Download full text from publisher

    File URL: http://www.xreap.cat/RePEc/xrp/pdf/XREAP2011-13.pdf
    File Function: First version, 2011
    Download Restriction: no

    File URL: http://www.xreap.cat/RePEc/xrp/pdf/XREAP2011-13.pdf
    File Function: Revised version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mayers, David & Smith, Clifford W, Jr, 1983. "The Interdependence of Individual Portfolio Decisions and the Demand for Insurance," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 304-311, April.
    2. Babbel, David F, 1985. "The Price Elasticity of Demand for Whole Life Insurance," Journal of Finance, American Finance Association, vol. 40(1), pages 225-239, March.
    3. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    4. Patrick L. Brockett & Linda L. Golden & Montserrat Guillen & Jens Perch Nielsen & Jan Parner & Ana Maria Perez‐Marin, 2008. "Survival Analysis of a Household Portfolio of Insurance Policies: How Much Time Do You Have to Stop Total Customer Defection?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 713-737, September.
    5. J. Dhaene & S. Vanduffel & M. Goovaerts, 2007. "Comonotonicity," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 265-278.
    6. Verhoef, P.C. & Donkers, A.C.D., 2001. "Predicting Customer Potential Value: an application in the insurance industry," ERIM Report Series Research in Management ERS-2001-01-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Bolancé & Montserrat Guillen & Jens Perch Nielsen & Fredrik Thuring, 2018. "Price and Profit Optimization for Financial Services," Risks, MDPI, vol. 6(1), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunčica Rogić & Ljiljana Kašćelan & Vladimir Kašćelan & Vladimir Đurišić, 2022. "Automatic customer targeting: a data mining solution to the problem of asymmetric profitability distribution," Information Technology and Management, Springer, vol. 23(4), pages 315-333, December.
    2. Boucher, Jean-Philippe & Couture-Piché, Guillaume, 2015. "Modeling the number of insureds’ cars using queuing theory," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 67-76.
    3. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    4. Emily Norman Zietz, 2003. "An Examination of the Demand for Life Insurance," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 6(2), pages 159-191, September.
    5. D. F. Benoit & D. Van Den Poel, 2009. "Benefits of Quantile Regression for the Analysis of Customer Lifetime Value in a Contractual Setting: An Application in Financial Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/551, Ghent University, Faculty of Economics and Business Administration.
    6. Di Matteo, Livio & Herbert Emery, J. C., 2002. "Wealth and the demand for life insurance: evidence from Ontario, 1892," Explorations in Economic History, Elsevier, vol. 39(4), pages 446-469, October.
    7. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    8. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    9. Fr'ed'eric Planchet & Pierre-Emanuel Th'erond, 2010. "Allocation d'actifs selon le crit\`ere de maximisation des fonds propres \'economiques en assurance non-vie," Papers 1001.1867, arXiv.org.
    10. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
    11. Manuel Leiria & Nelson Matos & Efigénio Rebelo, 2021. "Non-life insurance cancellation: a systematic quantitative literature review," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(4), pages 593-613, October.
    12. Griselda Deelstra & Michèle Vanmaele & David Vyncke, 2010. "Minimizing the Risk of a Financial Product Using a Put Option," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 767-800, December.
    13. Froot, Kenneth A., 2001. "The market for catastrophe risk: a clinical examination," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 529-571, May.
    14. Karine Darjinoff & Francois Pannequin, 2000. "Demande d'assurance : Faut-il abandonner le critère de l'espérance d'utilité ?," Cahiers de la Maison des Sciences Economiques bla00004, Université Panthéon-Sorbonne (Paris 1).
    15. Tienyu Hwang & Brian Greenford, 2005. "A Cross‐Section Analysis of the Determinants of Life Insurance Consumption in Mainland China, Hong Kong, and Taiwan," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 8(1), pages 103-125, March.
    16. Lin, Wen-chang & Lu, Jin-ray, 2012. "Risky asset allocation and consumption rule in the presence of background risk and insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 150-158.
    17. Shawn Cole & Xavier Gine & Jeremy Tobacman & Petia Topalova & Robert Townsend & James Vickery, 2013. "Barriers to Household Risk Management: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 5(1), pages 104-135, January.
    18. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    19. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    20. R. Guy Thomas, 2018. "Why Insurers Are Wrong about Adverse Selection," Laws, MDPI, vol. 7(2), pages 1-8, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:xrp:wpaper:xreap2011-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: XREAP The email address of this maintainer does not seem to be valid anymore. Please ask XREAP to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/xreapes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.