IDEAS home Printed from
   My bibliography  Save this paper

Utility based pricing of contingent claims


  • A. Gamba

    (Venice University)

  • P. Pellizzari

    (Venice University)


In a discrete setting, we develop a model for pricing a contingent claim. Since the presence of hedging opportunities influences the price of a contingent claim, first we introduce the optimal hedging strategy assuming a contingent claim has been issued: a strategy implemented by investing the budget plus the selling price is optimal if it maximizes the expected utility of the agent's revenue, which is the difference between the outcome of the hedging portfolio and the payoff of the claim. Next, we introduce the `reservation price' as a subjective valuation of a contingent claim. This is defined as the minimum price to be added to the initial budget that makes the issue of the claim more preferable than optimally investing in the available securities. We define the reservation price both for a short position (reservation selling price) and for a long position (reservation buying price) in the contingent claim. When the contingent claim is redundant, both the selling and the buying price collapse in the usual Arrow-Debreu price. We develop a numerical procedure to evaluate the reservation price and two applications are provided. Different utility functions are used and some qualitative properties of the reservation price are shown.

Suggested Citation

  • A. Gamba & P. Pellizzari, 1999. "Utility based pricing of contingent claims," Finance 9902003, EconWPA, revised 14 Oct 2002.
  • Handle: RePEc:wpa:wuwpfi:9902003
    Note: Type of Document - LaTex; prepared on Mac; to print on PostScript; pages: 30; figures: included

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Magill, Michael & Shafer, Wayne, 1991. "Incomplete markets," Handbook of Mathematical Economics,in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 30, pages 1523-1614 Elsevier.
    2. Duffie, Darrell & Skiadas, Costis, 1994. "Continuous-time security pricing : A utility gradient approach," Journal of Mathematical Economics, Elsevier, vol. 23(2), pages 107-131, March.
    3. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(01), pages 1-12, March.
    4. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    5. Bernard Bensaid & Jean-Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lampros Boukas & Diogo Pinheiro & Alberto Pinto & Stylianos Xanthopoulos & Athanasios Yannacopoulos, 2009. "Behavioural and Dynamical Scenarios for Contingent Claims Valuation in Incomplete Markets," Papers 0903.3657,

    More about this item


    Incomplete markets; reservation price; expected utility; optimization;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9902003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.