IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/508.html
   My bibliography  Save this paper

A Simple Characterization of Dynamic Completeness in Continuous Time

Author

Listed:
  • Diasakos, Theodoros M

Abstract

This paper investigates dynamic completeness of financial markets in which the underlying risk process is a multi-dimensional Brownian motion and the risky securities dividends geometric Brownian motions. A sufficient condition, that the instantaneous dispersion matrix of the relative dividends is non-degenerate, was established recently in the literature for single-commodity, pure-exchange economies with many heterogenous agents, under the assumption that the intermediate flows of all dividends, utilities, and endowments are analytic functions. For the current setting, a different mathematical argument in which analyticity is not needed shows that a slightly weaker condition suffices for general pricing kernels. That is, dynamic completeness obtains irrespectively of preferences, endowments, and other structural elements (such as whether or not the budget constraints include only pure exchange, whether or not the time horizon is finite with lump-sum dividends available on the terminal date, etc.)

Suggested Citation

  • Diasakos, Theodoros M, 2013. "A Simple Characterization of Dynamic Completeness in Continuous Time," SIRE Discussion Papers 2013-91, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:508
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/508
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Skiadas, Costis, 1994. "Continuous-time security pricing : A utility gradient approach," Journal of Mathematical Economics, Elsevier, vol. 23(2), pages 107-131, March.
    2. Basak, Suleyman & Cuoco, Domenico, 1998. "An Equilibrium Model with Restricted Stock Market Participation," Review of Financial Studies, Society for Financial Studies, vol. 11(2), pages 309-341.
    3. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    4. Robert M. Anderson & Roberto C. Raimondo, 2008. "Equilibrium in Continuous-Time Financial Markets: Endogenously Dynamically Complete Markets," Econometrica, Econometric Society, vol. 76(4), pages 841-907, July.
    5. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    6. Farhi, Emmanuel & Panageas, Stavros, 2007. "Saving and investing for early retirement: A theoretical analysis," Journal of Financial Economics, Elsevier, vol. 83(1), pages 87-121, January.
    7. Riedel, Frank, 2001. "Existence of Arrow-Radner Equilibrium with Endogenously Complete Markets under Incomplete Information," Journal of Economic Theory, Elsevier, vol. 97(1), pages 109-122, March.
    8. Hugonnier, Julien, 2012. "Rational asset pricing bubbles and portfolio constraints," Journal of Economic Theory, Elsevier, vol. 147(6), pages 2260-2302.
    9. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    10. J. Hugonnier & S. Malamud & E. Trubowitz, 2012. "Endogenous Completeness of Diffusion Driven Equilibrium Markets," Econometrica, Econometric Society, vol. 80(3), pages 1249-1270, May.
    11. Ian Martin, 2013. "The Lucas Orchard," Econometrica, Econometric Society, vol. 81(1), pages 55-111, January.
    12. Jan Ericsson & Olivier Renault, 2006. "Liquidity and Credit Risk," Journal of Finance, American Finance Association, vol. 61(5), pages 2219-2250, October.
    13. (*), Thaleia Zariphopoulou & George M. Constantinides, 1999. "Bounds on prices of contingent claims in an intertemporal economy with proportional transaction costs and general preferences," Finance and Stochastics, Springer, vol. 3(3), pages 345-369.
    14. Instefjord, Norvald, 2005. "Risk and hedging: Do credit derivatives increase bank risk?," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 333-345, February.
    15. He, Hua & Leland, Hayne, 1993. "On Equilibrium Asset Price Processes," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 593-617.
    16. Nielsen, Lars Tyge, 1999. "Pricing and Hedging of Derivative Securities," OUP Catalogue, Oxford University Press, number 9780198776192.
    17. Bick, Avi, 1987. "On the Consistency of the Black-Scholes Model with a General Equilibrium Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(03), pages 259-275, September.
    18. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    19. Epaulard, Anne & Pommeret, Aude, 2003. "Optimally eating a stochastic cake: a recursive utility approach," Resource and Energy Economics, Elsevier, vol. 25(2), pages 129-139, May.
    20. Cadenillas, Abel & Zapatero, Fernando, 1999. "Optimal Central Bank Intervention in the Foreign Exchange Market," Journal of Economic Theory, Elsevier, vol. 87(1), pages 218-242, July.
    21. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodoros M. Diasakos, 2013. "Comparative Statics of Asset Prices: the effect of other assets' risk," Discussion Paper Series, Department of Economics 201315, Department of Economics, University of St. Andrews, revised 08 Jan 2014.

    More about this item

    Keywords

    Dynamically-Complete Markets; Geometric Brownian Motion; Asset Pricing;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Office). General contact details of provider: http://edirc.repec.org/data/sireeuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.