IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0505024.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Bayesian Methods for Improving Credit Scoring Models

Author

Listed:
  • Posch Peter N.

    (University of Ulm)

  • Loeffler Gunter

    (University of Ulm)

  • Schoene Christiane

    (University of Ulm)

Abstract

We propose a Bayesian methodology that enables banks to improve their credit scoring models by imposing prior information. As prior information, we use coefficients from credit scoring models estimated on other data sets. Through simulations, we explore the default prediction power of three Bayesian estimators in three different scenarios and find that they perform better than standard maximum likelihood estimates. We recommend that banks consider Bayesian estimation for internal and regulatory default prediction models.

Suggested Citation

  • Posch Peter N. & Loeffler Gunter & Schoene Christiane, 2005. "Bayesian Methods for Improving Credit Scoring Models," Finance 0505024, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0505024
    Note: Type of Document - pdf; pages: 27
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0505/0505024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
    2. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    3. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    4. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mestiri, Sami & Farhat, Abdejelil, 2018. "Credit Risk Prediction based on Bayesian estimation of logistic regression model with random effects," MPRA Paper 119960, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    2. Gabriel Jiménez & Steven Ongena & José‐Luis Peydró & Jesús Saurina, 2014. "Hazardous Times for Monetary Policy: What Do Twenty‐Three Million Bank Loans Say About the Effects of Monetary Policy on Credit Risk‐Taking?," Econometrica, Econometric Society, vol. 82(2), pages 463-505, March.
    3. Gabriel Jiménez & Steven Ongena & José-Luis Peydró & Jesús Saurina, 2017. "“In the Short Run Blasé, In the Long Run Risqué”," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 181-226, August.
    4. Nico Dewaelheyns & Cynthia Van Hulle & Yannick Van Landuyt & Mathias Verreydt, 2021. "Labor Contracts, Wages and SME Failure," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    5. Jiménez, Gabriel & Ongena, Steven & Peydró, José-Luis & Saurina, Jesús, 2017. "‘In the Short Run Blasé, in the Long Run Risqué’. On the Effects of Monetary Policy on Bank Credit Risk-Taking in the Short versus Long Run," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 181-226.
    6. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    7. Kasper Regenburg & Morten Nicklas Bigler Seitz, 2021. "Criminals, bankruptcy, and cost of debt," Review of Accounting Studies, Springer, vol. 26(3), pages 1004-1045, September.
    8. Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
    9. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    10. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    11. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    12. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    13. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    14. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    15. Chang, Bi-Juan & Hung, Mao-Wei, 2021. "Corporate debt and cash decisions: A nonlinear panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 15-37.
    16. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    17. Kanak Patel & Ricardo Pereira, 2007. "Expected Default Probabilities in Structural Models: Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 107-133, January.
    18. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    19. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    20. Michael Halling & Evelyn Hayden, 2008. "Bank failure prediction: a two-step survival time approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 56th ISI Session, Lisbon, August 2007, volume 28, pages 48-73, Bank for International Settlements.

    More about this item

    Keywords

    Credit Scoring; Bayesian Inference; Bankruptcy Prediction;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0505024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.