IDEAS home Printed from
   My bibliography  Save this paper

Measurement of Financial Risk Persistence


  • Cornelis A. Los

    (Kent State University)


This paper discusses various ways of measuring the persistence or Long Memory (LM) of financial market risk in both its time and frequency domains. For the measurement of the risk, irregularity or 'randomness' of these series, we can compute a set of critical Lipschitz - Hölder exponents, in particular, the Hurst Exponent and the Lévy Stability Alpha, and relate them to the Mandelbrot-Hoskings' fractional difference operators, as occur in the Fractional Brownian Motion model (which is our benchmark). The main contribution of this paper is to provide a compaison table of the various critical exponents available in various scientific disciplines to measure the LM persistence of time seies. It also discusses why Markov- and (G)ARCH models cannot capture this LM, long term dependence or risk persistence, because these models have finite lag lengths, while the empirically observed long memory risk phenomenon is an infinite lag length phenomenon. Currently, there are three techniques of nonstationary time series analysis to measure time - varying financial risk: Range/Scale analysis, windowed Fourier analysis, and wavelet MRA. This paper relates these powerful analytic techniques to classical Box-Jenkins-type time series analysis and to Pearson's spectral frequency analysis, which both rely on the uncorroboated assumption of stationarity and ergodicity.

Suggested Citation

  • Cornelis A. Los, 2005. "Measurement of Financial Risk Persistence," Finance 0502013, EconWPA.
  • Handle: RePEc:wpa:wuwpfi:0502013
    Note: Type of Document - pdf; pages: 37

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, EconWPA.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Sutthisit Jamdee & Cornelis A. Los, 2004. "Long Memory Options: Valuation," Finance 0409049, EconWPA.
    5. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    9. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cornelis A. Los, 2005. "The Degree of Stability of Price Diffusion," Finance 0508006, EconWPA.

    More about this item


    Persistence; long memory; dependence; time series; frequency; critical exponents; fractional Brownian motion; (G)ARCH; risk measurement;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0502013. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.