IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Note on Imposing Local Curvature on Generalized Leontief Models

  • Apostolos Serletis

    (University of Calgary)

  • Asghar Shahmoradi

    (University of Calgary)

In this paper, we build on Ryan and Wales (1998) and Moschini (1999) and impose curvature conditions locally on the generalized Leontief model, introduced by Diewert (1974). In doing so, we exploit the Hessian matrix of second order derivatives of the reciprocal indirect utility function, unlike Ryan and Wales (1998) and Moschini (1999) who exploit the Slutsky matrix.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econwpa.repec.org/eps/em/papers/0509/0509020.pdf
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0509020.

as
in new window

Length:
Date of creation: 28 Sep 2005
Date of revision:
Handle: RePEc:wpa:wuwpem:0509020
Note: Type of Document - pdf
Contact details of provider: Web page: http://econwpa.repec.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Moschini, GianCarlo, 1999. "Imposing Local Curvature Conditions in Flexible Demand System," Staff General Research Papers 1745, Iowa State University, Department of Economics.
  2. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
  3. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-26, June.
  4. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1975. "Transcendental Logarithmic Utility Functions," American Economic Review, American Economic Association, vol. 65(3), pages 367-83, June.
  5. Ryan, David L & Wales, Terence J, 1998. "A Simple Method for Imposing Local Curvature in Some Flexible Consumer-Demand Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 331-38, July.
  6. Diewert, W E & Wales, T J, 1988. "Normalized Quadratic Systems of Consumer Demand Functions," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 303-12, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0509020. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.