IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/410.html
   My bibliography  Save this paper

The Theoretical Regularity Properties of the Normalized Quadratic Consumer Demand Model

Author

Listed:
  • Barnett, William A.
  • Usui, Ikuyasu

Abstract

We conduct a Monte Carlo study of the global regularity properties of the Normalized Quadratic model. We particularly investigate monotonicity violations, as well as the performance of methods of locally and globally imposing curvature. We find that monotonicity violations are especially likely to occur, when elasticities of substitution are greater than unity. We also find that imposing curvature locally produces difficulty in the estimation, smaller regular regions, and the poor elasticity estimates in many cases considered in the paper. Imposition of curvature alone does not assure regularity, and imposing local curvature alone can have very adverse consequences.

Suggested Citation

  • Barnett, William A. & Usui, Ikuyasu, 2006. "The Theoretical Regularity Properties of the Normalized Quadratic Consumer Demand Model," MPRA Paper 410, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:410
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/410/1/MPRA_paper_410.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barnett, William A., 1983. "Definitions of 'second order approximation' and of 'flexible functional form'," Economics Letters, Elsevier, vol. 12(1), pages 31-35.
    2. Moschini, Giancarlo, 1998. "The semiflexible almost ideal demand system," European Economic Review, Elsevier, vol. 42(2), pages 349-364, February.
    3. Diewert, W E & Wales, T J, 1988. "Normalized Quadratic Systems of Consumer Demand Functions," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 303-312, July.
    4. Diewert, W E & Wales, T J, 1992. "Quadratic Spline Models for Producer's Supply and Demand Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 705-722, August.
    5. Barten, A. P., 1969. "Maximum likelihood estimation of a complete system of demand equations," European Economic Review, Elsevier, vol. 1(1), pages 7-73.
    6. William Barnett & Meenakshi Pasupathy, 2003. "Regularity of the Generalized Quadratic Production Model: A Counterexample," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 135-154.
    7. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    8. W. E. Diewert & T. J. Wales, 1993. "Linear and Quadratic Spline Models for Consumer Demand Functions," Canadian Journal of Economics, Canadian Economics Association, vol. 26(1), pages 77-106, February.
    9. Ryan, David L & Wales, Terence J, 1998. "A Simple Method for Imposing Local Curvature in Some Flexible Consumer-Demand Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 331-338, July.
    10. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    11. Blackorby, Charles & Russell, R Robert, 1989. "Will the Real Elasticity of Substitution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima Elasticities)," American Economic Review, American Economic Association, vol. 79(4), pages 882-888, September.
    12. Gallant, A. Ronald & Golub, Gene H., 1984. "Imposing curvature restrictions on flexible functional forms," Journal of Econometrics, Elsevier, vol. 26(3), pages 295-321, December.
    13. Basmann, R L & Molina, D J & Slottje, D J, 1983. "Budget Constraint Prices as Preference Changing Parameters of Generalized Fechner-Thurstone Direct Utility Functions," American Economic Review, American Economic Association, vol. 73(3), pages 411-413, June.
    14. Guilkey, David K & Lovell, C A Knox, 1980. "On the Flexibility of the Translog Approximation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 137-147, February.
    15. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-170, February.
    16. Wales, Terence J., 1977. "On the flexibility of flexible functional forms : An empirical approach," Journal of Econometrics, Elsevier, vol. 5(2), pages 183-193, March.
    17. Hanoch, Giora, 1975. "Production and Demand Models with Direct or Indirect Implicit Additivity," Econometrica, Econometric Society, vol. 43(3), pages 395-419, May.
    18. Apostolos Serletis & Asghar Shahmoradi, 2006. "Semi-Nonparametric Estimates of the Demand for Money in the United States," World Scientific Book Chapters,in: Money And The Economy, chapter 14, pages 278-298 World Scientific Publishing Co. Pte. Ltd..
    19. Caves, Douglas W & Christensen, Laurits R, 1980. "Global Properties of Flexible Functional Forms," American Economic Review, American Economic Association, vol. 70(3), pages 422-432, June.
    20. Diewert, W. E. & Wales, T. J., 1988. "A normalized quadratic semiflexible functional form," Journal of Econometrics, Elsevier, vol. 37(3), pages 327-342, March.
    21. Chris Fawson & C. Richard Shumway & Robert L. Basmann, 1990. "Agricultural Production Technologies with Systematic and Stochastic Technical Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(1), pages 182-199.
    22. Blackorby, Charles & Primont, Daniel & Russell, R. Robert, 1977. "On testing separability restrictions with flexible functional forms," Journal of Econometrics, Elsevier, vol. 5(2), pages 195-209, March.
    23. Guilkey, David K & Lovell, C A Knox & Sickles, Robin C, 1983. "A Comparison of the Performance of Three Flexible Functional Forms," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 591-616, October.
    24. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    25. Diewert, W. E. & Wales, T. J., 1995. "Flexible functional forms and tests of homogeneous separability," Journal of Econometrics, Elsevier, vol. 67(2), pages 259-302, June.
    26. Mark Jensen, 1997. "Revisiting the flexibility and regularity properties of the asymptotically ideal production model," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 179-203.
    27. Humphrey, David Burras & Moroney, John R, 1975. "Substitution among Capital, Labor, and Natural Resource Products in American Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 83(1), pages 57-82, February.
    28. Fleissig, Adrian R. & Kastens, Terry & Terrell, Dek, 2000. "Evaluating the semi-nonparametric fourier, aim, and neural networks cost functions," Economics Letters, Elsevier, vol. 68(3), pages 235-244, September.
    29. Berndt, Ernst R & Khaled, Mohammed S, 1979. "Parametric Productivity Measurement and Choice among Flexible Functional Forms," Journal of Political Economy, University of Chicago Press, vol. 87(6), pages 1220-1245, December.
    30. Ryan, David L. & Wales, Terence J., 2000. "Imposing local concavity in the translog and generalized Leontief cost functions," Economics Letters, Elsevier, vol. 67(3), pages 253-260, June.
    31. Moschini, GianCarlo, 1998. "Semiflexible Almost Ideal Demand System, The," Staff General Research Papers Archive 1193, Iowa State University, Department of Economics.
    32. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    33. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    2. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    3. Färe, Rolf & Grosskopf, Shawna & Hayes, Kathy J. & Margaritis, Dimitris, 2008. "Estimating demand with distance functions: Parameterization in the primal and dual," Journal of Econometrics, Elsevier, vol. 147(2), pages 266-274, December.

    More about this item

    Keywords

    Monte Carlo; flexible functional form; production; normalized quadratic; regularity; curvature; monotonicity;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:410. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.