IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0503007.html
   My bibliography  Save this paper

Dynamic Conditional Correlation with Elliptical Distributions

Author

Listed:
  • Matteo M. Pelagatti

    (University of Milan-Bicocca)

  • Stefania Rondena

    (University of Milan-Bicocca)

Abstract

The Dynamic Conditional Correlation model of Engle has made the estimation of multivariate GARCH models feasible for reasonably big vectors of securities’ returns. In the present paper we show how Engle’s twosteps estimate of the model can be easily extended to elliptical conditional distributions and apply different leptokurtic DCC models to some stocks listed at the Milan Stock Exchange. A free software written by the authors to carry out all the required computations is presented as well.

Suggested Citation

  • Matteo M. Pelagatti & Stefania Rondena, 2005. "Dynamic Conditional Correlation with Elliptical Distributions," Econometrics 0503007, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0503007
    Note: Type of Document - pdf; pages: 11. Presented at the 2nd OxMetrics User Conference, London, August 2004.
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0503/0503007.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, December.
    3. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
    4. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    5. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    6. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    7. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    8. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polonik, Wolfgang & Yao, Qiwei, 2008. "Testing for multivariate volatility functions using minimum volume sets and inverse regression," Journal of Econometrics, Elsevier, vol. 147(1), pages 151-162, November.
    2. You, Leyuan & Daigler, Robert T., 2010. "Is international diversification really beneficial?," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 163-173, January.
    3. repec:wyi:journl:002141 is not listed on IDEAS
    4. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.

    More about this item

    Keywords

    Multivariate GARCH; Dynamic conditional correlation; Generalized method of moments;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0503007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.