IDEAS home Printed from
   My bibliography  Save this paper

Replication and Mutation on Neutral Networks: Updated Version 2000


  • Christian Reidys
  • Christian V. Forst
  • Peter Schuster


Folding of RNA sequences into secondary structures is viewed as a map that assigns a uniquely defined base pairing pattern to every sequence. The mapping is non-invertible since many sequences fold into the same minimum free energy (secondary) structure or shape. The preimages of this map, called neutral networks, are uniquely associated with the shapes and vice versa. Random graph theory is used to construct networks in sequence space which are suitable models for neutral networks. The theory of molecular quasispecies has been applied to replication and mutation on single-peak fitness landscapes. This concept is extended by considering evolution on degenerate multi-peak landscapes which originate from neutral networks by assuming that one particular shape is fitter than all others. On such a single-shape landscape the superior fitness value is assigned to all sequences belonging to the master shape. All other shapes are lumped together and their fitness values are averaged in a way that is reminiscent of mean field theory. Replication and mutation on neutral networks are modeled by phenomenological rate equations as well as by a stochastic birth-and-death model. In analogy to the error threshold in sequence space the phenotypic error threshold separates two scenarios: (i) a stationary (fittest) master shape surrounded by closely related shapes and (ii) populations drifting through shape space by a diffusion like process. The error classes of the quasispecies model are replaced by distance classes between the master shape and the other structures. Analytical results are derived for single-shape landscapes, in particular, simple expressions are obtained for the mean fraction of master shapes in a population and for phenotypic error thresholds. The analytical results are complemented by data obtained from computer simulation of the underlying stochastic processes. The predictions of the phenomenological approach on the single-shape landscape are very well reproduced by replication and mutation kinetics of tRNAphe. Simulation of the stochastic process at a resolution of individual distance classes yields data which are in excellent agreement with the results derived from the birth-and-death model.

Suggested Citation

  • Christian Reidys & Christian V. Forst & Peter Schuster, 2000. "Replication and Mutation on Neutral Networks: Updated Version 2000," Working Papers 00-11-061, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:00-11-061

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Gernot Grabher & Walter W. Powell (ed.), 2004. "Networks," Books, Edward Elgar Publishing, volume 0, number 2771.
    2. W. Fontana & P. Schuster, 1998. "Shaping Space: The Possible and the Attainable in RNA Genotype-Phenotype Mapping," Working Papers ir98004, International Institute for Applied Systems Analysis.
    3. Peter Schuster, 2000. "Molecular Insights into Evolution of Phenotypes," Working Papers 00-02-013, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tomassini, Marco, 2016. "Lévy flights in neutral fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 163-171.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:00-11-061. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.