IDEAS home Printed from
   My bibliography  Save this paper

Interacting Microsoft Visual Basic Procedures (Macros) and GIS tools in order to access optimal location and maximum use of railways and railway infrastructures


  • José Manuel Viegas


  • Helder Cristovão


  • João Filipe Camisão Caio Vieira


  • Elisabete A. Silva



Some parts of the Portuguese railway infrastructure have been neglected through time: Rural lines have been abandoned, investment in new infrastructure is sometimes delayed, and marketing strategies to keep or attract more users have not been pursued. Simultaneously, problems with urban congestion, pollution and mobility for the young, the elderly, the poor, and the handicapped are putting forward the discussion about new or more sustainable modes of transportation. Common sense of public officials, other lobbying groups, and the locals demand new, trendy train lines. And while some axes may have the potential to justify rail lines, others seem to lack population or funding to be enabled. One major problem in order to evaluate the worthiness of these rail projects has been the fact that very often the studies of travel demand and physical implantation are done separately. Travel demand analysis is done based on the four-step model (trip generation, distribution, modal split, and network assignment) using survey data and the network system, using a relatively wide zoning. The importance of interacting with other, finer, information (i.e. slope, density of population, environmental sensitivity, or other socio-economic and land use information) with the development of the travel analysis demand will enhance the analysis/results and increase the chance of proposing lines that are both optimal in location and will have the maximum use by the citizens. Off the shelf software is still unable to perform this kind of operations. Some perform the analysis using existing networks, and no information on the land is available besides the zoning system, other software propose lines accordingly to land slopes, but no trip information is included. GIS packages have the capacity to include the land information and some have some transportation analysis, but are lacking computation capabilities and algorithms to perform analysis similar to off-the-shelf transportation software. In order to develop this kind of integrated analysis it is important to have a good knowledge of the algorithms and analysis required by transportation and of the tools/opportunities offered by the GIS packages. This paper presents a methodology that integrates the transportation algorithms with the GIS functionalities, using excel macro-language. The result is an interaction of both travel demand analysis and site selection. The characteristics of the place constrain the travel demand analysis, but on its own the travel demand analysis define not only the buffer of the train line, but systematically enhance the shape of the line and the location of the stops each time the results of a phase of the travel demand analysis is outputted. This paper offers guidelines for those developing travel demand analysis including some site selection criteria, and it can be a starting point for those of whom intend to develop further application of in the GIS fields.

Suggested Citation

  • José Manuel Viegas & Helder Cristovão & João Filipe Camisão Caio Vieira & Elisabete A. Silva, 2004. "Interacting Microsoft Visual Basic Procedures (Macros) and GIS tools in order to access optimal location and maximum use of railways and railway infrastructures," ERSA conference papers ersa04p602, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa04p602

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    2. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    3. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa04p602. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.