IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/376.html
   My bibliography  Save this paper

Empirical Hedging Performance on Long-Dated Crude Oil Derivatives

Author

Abstract

This paper presents an empirical study on hedging long-dated crude oil futures options with forward price models incorporating stochastic interest rates and stochastic volatility. Several hedging schemes are considered including delta, gamma, vega and interest rate hedge. Factor hedging is applied to the proposed multi-dimensional models and the corresponding hedge ratios are estimated by using historical crude oil futures prices, crude oil option prices and Treasury yields. Hedge ratios from stochastic interest rate models consistently improve hedging performance over hedge ratios from deterministic interest rate models, an improvement that becomes more pronounced over periods with high interest rate volatility, such as during the GFC. An interest rate hedge consistently improves hedging beyond delta, gamma and vega hedging, especially when shorter maturity contracts are used to roll the hedge forward. Furthermore, when the market experiences high interest rate volatility and the hedge is subject to high basis risk, adding interest rate hedge to delta hedge provides an improvement, while adding gamma and/or vega to the delta hedge worsens performance.

Suggested Citation

  • Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Hedging Performance on Long-Dated Crude Oil Derivatives," Research Paper Series 376, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:376
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/QFR-rp376.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    2. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    3. Yulia V. Veld‐Merkoulova & Frans A. de Roon, 2003. "Hedging long‐term commodity risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(2), pages 109-133, February.
    4. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    7. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    8. Franklin R. Edwards & Michael S. Canter, 1995. "The Collapse Of Metallgesellschaft: Unhedgeable Risks, Poor Hedging Strategy, Or Just Bad Luck?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 8(1), pages 86-105.
    9. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Dempster, M.A.H. & Medova, Elena & Tang, Ke, 2008. "Long term spread option valuation and hedging," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2530-2540, December.
    11. Franklin R. Edwards & Michael S. Canter, 1995. "The collapse of Metallgesellschaft: Unhedgeable risks, poor hedging strategy, or just bad luck?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 211-264, May.
    12. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    13. Kenichiro Shiraya & Akihiko Takahashi, 2012. "Pricing and hedging of long-term futures and forward contracts by a three-factor model," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1811-1826, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:uts:finphd:37 is not listed on IDEAS
    2. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. repec:taf:quantf:v:17:y:2017:i:6:p:907-925 is not listed on IDEAS

    More about this item

    Keywords

    Stochastic interest rates; Delta hedge; Interest rate hedge; Long-dated crude oil options;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.