IDEAS home Printed from https://ideas.repec.org/p/ufg/qdsems/14-2005.html
   My bibliography  Save this paper

Neural Networks to Predict Financial Time Series in a Minority Game Context

Author

Listed:
  • Luca Grilli

    ()

  • Angelo Sfrecola

Abstract

In this paper we consider financial time series from U.S. Fixed Income Market, S&P500, Exchange Market and Oil Market. It is well known that financial time series reveal some anomalies as regards the Efficient Market Hypotesis and some scaling behavior is evident such as fat tails and clustered volatility. This suggests to consider financial time serie as "pseudo"-random time series. For this kind of time series the power of prediction of neural networks has been shown to be appreciable. We first consider the financial time serie from the Minority Game point of view and than we apply a neural network with learning algorithm in order to analyze its prediction power. We show that Fixed Income Market presents many differences from other markets in terms of predictability as a measure of market efficiency.

Suggested Citation

  • Luca Grilli & Angelo Sfrecola, 2005. "Neural Networks to Predict Financial Time Series in a Minority Game Context," Quaderni DSEMS 14-2005, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
  • Handle: RePEc:ufg:qdsems:14-2005
    Note: pdf file is available on request
    as

    Download full text from publisher

    File URL: http://www.economia.unifg.it/sites/sd01/files/allegatiparagrafo/29-11-2016/abstractq1405.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Challet, Damien, 2008. "Inter-pattern speculation: Beyond minority, majority and $-games," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 85-100, January.
    2. Grilli, Luca, 2004. "Long-term fixed income market structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 441-447.
    3. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    4. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Minority Game; Learning Algorithms; Neural Networks; Financial Time Series; Efficient Market Hypotesis;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ufg:qdsems:14-2005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Luca Grilli). General contact details of provider: http://edirc.repec.org/data/emsfoit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.