IDEAS home Printed from https://ideas.repec.org/p/uea/ueaeco/2019_04.html
   My bibliography  Save this paper

The Multivariate Random Preference Estimatorfor Switching Multiple Price List Data

Author

Listed:
  • Anna Conte

    (Sapienza University of Rome)

  • Peter G Moffatt

    (University of East Anglia)

  • Mary Riddel

    (University of Nevada)

Abstract

The use of Multiple Price Lists to elicit individuals' risk preferences is widespread. To model data collected through this method, we introduce the Multivariate Random Preference (MRP) estimator, specifically designed for the \switching" variant of such lists. This is a new estimation approach that enables us to exploit all available information derived from subjects' switch points in the lists. Monte Carlo simulations show that our estimator is consistent and has good small-sample properties. The estimator is derived for a two-parameter model in a risky context.

Suggested Citation

  • Anna Conte & Peter G Moffatt & Mary Riddel, 2019. "The Multivariate Random Preference Estimatorfor Switching Multiple Price List Data," University of East Anglia School of Economics Working Paper Series 2019-04, School of Economics, University of East Anglia, Norwich, UK..
  • Handle: RePEc:uea:ueaeco:2019_04
    as

    Download full text from publisher

    File URL: https://ueaeco.github.io/working-papers/papers/ueaeco/UEA-ECO-19-04.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Antoni Bosch-Domènech & Joaquim Silvestre, 2013. "Measuring risk aversion with lists: a new bias," Theory and Decision, Springer, vol. 75(4), pages 465-496, October.
    2. Loomes, Graham & Moffatt, Peter G & Sugden, Robert, 2002. "A Microeconometric Test of Alternative Stochastic Theories of Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 103-130, March.
    3. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Steven Stern, 1997. "Simulation-Based Estimation," Journal of Economic Literature, American Economic Association, vol. 35(4), pages 2006-2039, December.
    6. David J. Freeman & Yoram Halevy & Terri Kneeland, 2019. "Eliciting risk preferences using choice lists," Quantitative Economics, Econometric Society, vol. 10(1), pages 217-237, January.
    7. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    8. Glenn W. Harrison & Morten I. Lau & Melonie B. Williams, 2002. "Estimating Individual Discount Rates in Denmark: A Field Experiment," American Economic Review, American Economic Association, vol. 92(5), pages 1606-1617, December.
    9. Mary Riddel & Sonja Kolstoe, 2013. "Heterogeneity in life-duration preferences: Are risky recreationists really more risk loving?," Journal of Risk and Uncertainty, Springer, vol. 46(2), pages 191-213, April.
    10. Elaine M. Liu, 2013. "Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1386-1403, October.
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    13. Steffen Andersen & Glenn Harrison & Morten Lau & E. Rutström, 2009. "Elicitation using multiple price list formats," Experimental Economics, Springer;Economic Science Association, vol. 12(3), pages 365-366, September.
    14. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    15. Matthew Rabin, 1998. "Psychology and Economics," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 11-46, March.
    16. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    17. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, April.
    18. Quang Nguyen & Colin Camerer & Tomomi Tanaka, 2010. "Risk and Time Preferences Linking Experimental and Household Data from Vietnam," Post-Print halshs-00547090, HAL.
    19. Anna Conte & Peter Moffatt, 2014. "The econometric modelling of social preferences," Theory and Decision, Springer, vol. 76(1), pages 119-145, January.
    20. Adrian Bruhin & Helga Fehr-Duda & Thomas Epper, 2010. "Risk and Rationality: Uncovering Heterogeneity in Probability Distortion," Econometrica, Econometric Society, vol. 78(4), pages 1375-1412, July.
    21. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    22. Mary Riddel, 2012. "Comparing risk preferences over financial and environmental lotteries," Journal of Risk and Uncertainty, Springer, vol. 45(2), pages 135-157, October.
    23. Anna Conte & John D. Hey, 2018. "Rehabilitating the Random Utility Model. A comment on Apesteguia and Ballester (2018)," Discussion Papers 18/12, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Risk Preference; Monte Carlo Simulations; Importance Sampling;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uea:ueaeco:2019_04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Cushan). General contact details of provider: http://edirc.repec.org/data/esueauk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.