IDEAS home Printed from https://ideas.repec.org/p/trt/disawp/2011-09.html
   My bibliography  Save this paper

Modelling fraud detection by attack trees and Choquet integral

Author

Listed:
  • Silvia Bortot
  • Mario Fedrizzi
  • Silvio Giove

Abstract

Modelling an attack tree is basically a matter of associating a logical "and" and a logical "or" but in most of real world applications related to fraud management the "and/or"logic is not adequate to effectively represent the relationship between a parent node and its children, most of all when information about attributes is associated to the nodes and the main problem to solve is how to promulgate attribute values up the tree through recursive aggregation operations occurring at the "and/or"nodes. OWA-based aggregations have been introduced to generalize "and" and "or" operators starting from the observation that in between the extremes "or all"(and) and "or any"(or), terms (quantifiers) like "several" "most" "few" "some" etc. can be introduced to represent the different weights associated to the nodes in the aggregation. The aggregation process taking place at an OWA node depends on the ordered position of the child nodes but it doesn't take care of the possible interactions between the nodes. In this paper, we propose to overcome this drawback introducing the Choquet integral whose distinguished feature is to be able to take into account the interaction between nodes. At first, the attack tree is valuated recursively through a bottom-up algorithm whose complexity is linear versus the number of nodes and exponential for every node. Then, the algorithm is extended assuming that the attribute values in the leaves are unimodal LR fuzzy numbers and the calculation of Choquet integral is carried out using the alpha-cuts.

Suggested Citation

  • Silvia Bortot & Mario Fedrizzi & Silvio Giove, 2011. "Modelling fraud detection by attack trees and Choquet integral," DISA Working Papers 2011/09, Department of Computer and Management Sciences, University of Trento, Italy, revised 31 Aug 2011.
  • Handle: RePEc:trt:disawp:2011/09
    as

    Download full text from publisher

    File URL: http://www.unitn.it/files/download/13980/92011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grabisch, Michel & Labreuche, Christophe & Vansnick, Jean-Claude, 2003. "On the extension of pseudo-Boolean functions for the aggregation of interacting criteria," European Journal of Operational Research, Elsevier, vol. 148(1), pages 28-47, July.
    2. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    3. Ghirardato, Paolo & Le Breton, Michel, 2000. "Choquet Rationality," Journal of Economic Theory, Elsevier, vol. 90(2), pages 277-285, February.
    4. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    5. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    6. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    7. Marc Roubens & Michel Grabisch, 1999. "An axiomatic approach to the concept of interaction among players in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 547-565.
    8. Cardin, Marta & Giove, Silvio, 2008. "Aggregation Functions With Non-Monotonic Measures," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 0(2), pages 3-15, November.
    9. De Waegenaere, Anja & Wakker, Peter P., 2001. "Nonmonotonic Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 36(1), pages 45-60, September.
    10. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2009. "Aggregation functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445120, HAL.
    11. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Bortot & Ricardo Alberto Marques Pereira, 2011. "Inconsistency and non-additive Choquet integration in the Analytic Hierarchy Process," DISA Working Papers 2011/06, Department of Computer and Management Sciences, University of Trento, Italy, revised 29 Jul 2011.
    2. Alessio Bonetti & Silvia Bortot & Mario Fedrizzi & Silvio Giove & Ricardo Alberto Marques Pereira & Andrea Molinari, 2011. "Modelling group processes and effort estimation in Project Management using the Choquet integral: an MCDM approach," DISA Working Papers 2011/12, Department of Computer and Management Sciences, University of Trento, Italy, revised Sep 2011.
    3. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    4. Silvia Bortot & Ricardo Alberto Marques Pereira & Anastasia Stamatopoulou, 2020. "Shapley and superShapley aggregation emerging from consensus dynamics in the multicriteria Choquet framework," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 583-611, December.
    5. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    6. Paul Alain Kaldjob Kaldjob & Brice Mayag & Denis Bouyssou, 2023. "On the interpretation of the interaction index between criteria in a Choquet integral model," Post-Print hal-03766372, HAL.
    7. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    8. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    9. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    10. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    11. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    12. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    13. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    14. Francesco Tajani & Maria Rosaria Guarini & Francesco Sica & Rossana Ranieri & Debora Anelli, 2022. "Multi-Criteria Analysis and Sustainable Accounting. Defining Indices of Sustainability under Choquet’s Integral," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    15. Silvia Bortot & Ricardo Alberto Marques Pereira & Thuy H. Nguyen, 2015. "Welfare functions and inequality indices in the binomial decomposition of OWA functions," DEM Discussion Papers 2015/08, Department of Economics and Management.
    16. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    17. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    18. Ferreira, João J.M. & Jalali, Marjan S. & Ferreira, Fernando A.F., 2018. "Enhancing the decision-making virtuous cycle of ethical banking practices using the Choquet integral," Journal of Business Research, Elsevier, vol. 88(C), pages 492-497.
    19. Michel Grabisch & Christophe Labreuche, 2002. "The symmetric and asymmetric Choquet integrals on finite spaces for decision making," Statistical Papers, Springer, vol. 43(1), pages 37-52, January.
    20. Mikhail Timonin, 2012. "Maximization of the Choquet integral over a convex set and its application to resource allocation problems," Annals of Operations Research, Springer, vol. 196(1), pages 543-579, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trt:disawp:2011/09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roberto Gabriele (email available below). General contact details of provider: https://edirc.repec.org/data/ditreit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.