Model-based Measurement of Latent Risk in Time Series with Applications
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008. "Model‐based measurement of latent risk in time series with applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277, January.
References listed on IDEAS
- Alexander Morton & Bärbel F. Finkenstädt, 2005. "Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 575-594, June.
- Steven D. Levitt & Jack Porter, 2001.
"Sample Selection In The Estimation Of Air Bag And Seat Belt Effectiveness,"
The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 603-615, November.
- Steven D. Levitt & Jack Porter, 1999. "Sample Selection in the Estimation of Air Bag and Seat Belt Effectiveness," NBER Working Papers 7210, National Bureau of Economic Research, Inc.
- Lel Li & Karl Kim, 2000. "Estimating driver crash risks based on the extended Bradley–Terry model: an induced exposure method," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(2), pages 227-240.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178, Decembrie.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, Decembrie.
- Harvey, Andrew, 2001. "Testing in Unobserved Components Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 1-19, January.
- De Jong, Piet & Boyle, Phelim P., 1983. "Monitoring mortality : A state-space approach," Journal of Econometrics, Elsevier, vol. 23(1), pages 131-146, September.
- Linda Allen & Anthony Saunders, 2003. "A survey of cyclical effects in credit risk measurement model," BIS Working Papers 126, Bank for International Settlements.
- Ledolter, Johannes & Klugman, Stuart & Lee, Chang-Soo, 1991. "Credibility Models with Time-Varying Trend Components," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 73-91, April.
- B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
- Gaudry, M., 1984. "Drag, un Modele de la Demande Routiere, des Accidents et de Leur Gravite, Applique au Quebec de 1956 a 1982," Cahiers de recherche 8432, Universite de Montreal, Departement de sciences economiques.
- Francesca Dominici & Aidan M.C. Dermott & Trevor J. Hastie, 2004. "Improved Semiparametric Time Series Models of Air Pollution and Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 938-948, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Frits Bijleveld & Jacques Commandeur & Siem Jan Koopman & Kees van Montfort, 2010. "Multivariate non‐linear time series modelling of exposure and risk in road safety research," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 145-161, January.
- Weijermars, Wendy & Wesemann, Paul, 2013. "Road safety forecasting and ex-ante evaluation of policy in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 52(C), pages 64-72.
- Dadashova, Bahar & Ramírez Arenas, Blanca & McWilliams Mira, José & Izquierdo Aparicio, Francisco, 2014. "Explanatory and prediction power of two macro models. An application to van-involved accidents in Spain," Transport Policy, Elsevier, vol. 32(C), pages 203-217.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tommaso Proietti, 2002.
"Some Reflections on Trend-Cycle Decompositions with Correlated Components,"
Econometrics
0209002, University Library of Munich, Germany.
- Tommaso PROIETTI, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Economics Working Papers ECO2002/23, European University Institute.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- André Lucas & Siem Jan Koopman, 2005.
"Business and default cycles for credit risk,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
- Siem Jan Koopman & André Lucas, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
- Siem Jan Koopman & André Lucas, 2003. "Business and Default Cycles for Credit Risk," Tinbergen Institute Discussion Papers 03-062/2, Tinbergen Institute, revised 09 Jan 2003.
- Koopman, Siem Jan & Lucas, André, 2008.
"A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
- Siem Jan Koopman & André Lucas & Robert Daniels, 2005. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Tinbergen Institute Discussion Papers 05-060/4, Tinbergen Institute.
- Koopman, Siem Jan & Lucas, André, 2008.
"A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
- Siem Jan Koopman & André Lucas & Robert Daniels, 2005. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Tinbergen Institute Discussion Papers 05-060/4, Tinbergen Institute.
- Siem Jan Koopman & André Lucas & Robert J. Daniels, 2005. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," DNB Working Papers 055, Netherlands Central Bank, Research Department.
- Christophe Planas & Alessandro Rossi & Gabriele Fiorentini, 2008. "The marginal likelihood of Structural Time Series Models, with application to the euro area and US NAIRU," Working Paper series 21_08, Rimini Centre for Economic Analysis.
- A. Smyk & K. Webel, 2024. "Vers une désaisonnalisation des séries temporelles infra-mensuelles avec JDemetra+," Documents de Travail de l'Insee - INSEE Working Papers m2024-04, Institut National de la Statistique et des Etudes Economiques.
- González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2013.
"Modelling trigonometric seasonal components for monthly economic time series,"
Applied Economics, Taylor & Francis Journals, vol. 45(21), pages 3024-3034, July.
- Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2010. "Modeling Trigonometric Seasonal Components for Monthly Economic Time Series," Tinbergen Institute Discussion Papers 10-018/4, Tinbergen Institute.
- Proietti, Tommaso & Pedregal, Diego J., 2023.
"Seasonality in High Frequency Time Series,"
Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
- Tommaso Proietti & Diego J. Pedregal, 2021. "Seasonality in High Frequency Time Series," CEIS Research Paper 508, Tor Vergata University, CEIS, revised 11 Mar 2021.
- Tommaso Proietti & Eric Hillebrand, 2017.
"Seasonal changes in central England temperatures,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
- Tommaso Proietti & Eric Hillebrand, 2015. "Seasonal Changes in Central England Temperatures," CREATES Research Papers 2015-28, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti & Eric Hillebrand, 2015. "Seasonal Changes in Central England Temperatures," CEIS Research Paper 347, Tor Vergata University, CEIS, revised 15 Jun 2015.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- François R. Velde, 2009.
"Chronicle of a Deflation Unforetold,"
Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
- Francois R. Velde, 2006. "Chronicles of a deflation unforetold," Working Paper Series WP-06-12, Federal Reserve Bank of Chicago.
- Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
- Alejandro Rodriguez & Esther Ruiz, 2009.
"Bootstrap prediction intervals in state–space models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
- Rodríguez, Alejandro & Ruiz Ortega, Esther, 2008. "Bootstrap prediction intervals in State Space models," DES - Working Papers. Statistics and Econometrics. WS ws081104, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
- Jean-Luc Gaffard, 2014.
"Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre,"
Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main hal-01070291, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main halshs-00931247, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Post-Print halshs-00931247, HAL.
- Jean Luc Gaffard, 2012. "Crise de la theorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Documents de Travail de l'OFCE 2012-10, Observatoire Francais des Conjonctures Economiques (OFCE).
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Working Papers hal-01070291, HAL.
- Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
- Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
- Tobias Hartl & Roland Jucknewitz, 2022.
"Approximate state space modelling of unobserved fractional components,"
Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
- Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
More about this item
Keywords
Actuarial statistics; Dynamic factor analysis; Kalman filter; Maximum likelihood; Road casualties; State space model; Unobserved components;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2006-04-22 (Econometrics)
- NEP-FIN-2006-04-22 (Finance)
Lists
This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20050118. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.