Machine Learning Applications in Credit Risk Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 4, pages 123-127.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 4, pages 71-111.
- Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
- Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- Imbierowicz, Björn & Rauch, Christian, 2014. "The relationship between liquidity risk and credit risk in banks," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 242-256.
- Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.
- Nicolas Suhadolnik & Jo Ueyama & Sergio Da Silva, 2023. "Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach," JRFM, MDPI, vol. 16(12), pages 1-21, November.
- Jarosław Nowicki & Piotr Ratajczak & Dawid Szutowski, 2024. "Influence of Macroeconomic Factors on Financial Liquidity of Companies: Evidence from Poland," Risks, MDPI, vol. 12(7), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Sheikh Rabiul Islam & William Eberle & Sheikh K. Ghafoor & Sid C. Bundy & Douglas A. Talbert & Ambareen Siraj, 2019. "Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy," Papers 1911.09858, arXiv.org.
- Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
- Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
- Philippe Jardin, 2025. "Designing Ensemble-Based Models Using Neural Networks and Temporal Financial Profiles to Forecast Firms’ Financial Failure," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 149-209, January.
- Simon Cornée, 2014.
"Soft Information and Default Prediction in Cooperative and Social Banks,"
Journal of Entrepreneurial and Organizational Diversity, European Research Institute on Cooperative and Social Enterprises, vol. 3(1), pages 89-103, June.
- Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Post-Print halshs-01114142, HAL.
- Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Working Papers CEB 14-005, ULB -- Universite Libre de Bruxelles.
- Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Economics Working Paper Archive (University of Rennes & University of Caen) 201402, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
- Poledrini Simone & Searing Elizabeth A. M. & Montrone Alessandro, 2022. "A Model for Directing and Modulating Public Interventions in Social Enterprises," Nonprofit Policy Forum, De Gruyter, vol. 13(4), pages 307-332, October.
- Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
- Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
- Saara Tamminen, 2017. "Regional effects or none? Firms' profitability during the Great Recession in Finland," Papers in Regional Science, Wiley Blackwell, vol. 96(1), pages 33-59, March.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
- Saiful Anwar & A.M Hasan Ali, 2018. "ANNs-BASED EARLY WARNING SYSTEM FOR INDONESIAN ISLAMIC BANKS," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 20(3), pages 325-342, January.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G2 - Financial Economics - - Financial Institutions and Services
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ARA-2025-07-28 (MENA - Middle East and North Africa)
- NEP-BIG-2025-07-28 (Big Data)
- NEP-CMP-2025-07-28 (Computational Economics)
- NEP-FMK-2025-07-28 (Financial Markets)
- NEP-FOR-2025-07-28 (Forecasting)
- NEP-RMG-2025-07-28 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:wpaper:2508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sermet Pekin or Ilker Cakar or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tcmgvtr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/tcb/wpaper/2508.html