IDEAS home Printed from https://ideas.repec.org/p/tcb/wpaper/2508.html
   My bibliography  Save this paper

Machine Learning Applications in Credit Risk Prediction

Author

Listed:
  • Kubra Bolukbas
  • Ertan Tok

Abstract

The goal of this study is to identify the most effective model for predicting credit risk, the likelihood a commercial loan defaults (become a non-performing loan) in the Turkish banking sector and to determine which firm and loan characteristics influence that risk. The analysis draws on an unbalanced dataset of 1.2 million firm-level observations for 2018–2023, combining financial ratios with detailed loan- and firm-specific information. Class imbalance is addressed through oversampling (including SMOTE) and multiple down-sampling schemes. Although the risk is assessed ex-ante, model performance is evaluated ex-post using the ROC-AUC metric. Within tested conventional econometric and machine learning approaches accompanied with different sampling techniques, Extreme Gradient Boosting (XGBoost) with oversampling delivers the best result with a ROC-AUC score of 0.914. Compared with logistic regression under the same sampling setup, a 4.9- percentage-point increase in test ROC-AUC is attained, confirming the model’s superior predictive performance over conventional approaches. Accordingly, the study finds that the industry and location in which a firm operates, its loan-restructuring status, loan cost and type (fixed vs. floating rate), the firm’s record of bad checks, and core ratios capturing profitability, liquidity and leverage to be the most influential predictors of credit risk.

Suggested Citation

  • Kubra Bolukbas & Ertan Tok, 2025. "Machine Learning Applications in Credit Risk Prediction," Working Papers 2508, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  • Handle: RePEc:tcb:wpaper:2508
    as

    Download full text from publisher

    File URL: https://www.tcmb.gov.tr/wps/wcm/connect/09acfff5-622c-4d7e-a7a3-c6b23223fd6e/WP2508.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-09acfff5-622c-4d7e-a7a3-c6b23223fd6e-pwn5KyA
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G2 - Financial Economics - - Financial Institutions and Services
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:wpaper:2508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sermet Pekin or Ilker Cakar or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tcmgvtr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.