IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i12p496-d1288822.html
   My bibliography  Save this article

Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach

Author

Listed:
  • Nicolas Suhadolnik

    (Institute of Mathematics and Computer Science, University of Sao Paulo, Sao Carlos 13566-590, Brazil
    Regional Bank for Development of the South Region, Curitiba 80030-900, Brazil)

  • Jo Ueyama

    (Institute of Mathematics and Computer Science, University of Sao Paulo, Sao Carlos 13566-590, Brazil)

  • Sergio Da Silva

    (Graduate Program in Economics, Federal University of Santa Catarina, Florianopolis 88049-970, Brazil)

Abstract

Financial institutions and regulators increasingly rely on large-scale data analysis, particularly machine learning, for credit decisions. This paper assesses ten machine learning algorithms using a dataset of over 2.5 million observations from a financial institution. We also summarize key statistical and machine learning models in credit scoring and review current research findings. Our results indicate that ensemble models, particularly XGBoost, outperform traditional algorithms such as logistic regression in credit classification. Researchers and experts in the subject of credit risk can use this work as a practical reference as it covers crucial phases of data processing, exploratory data analysis, modeling, and evaluation metrics.

Suggested Citation

  • Nicolas Suhadolnik & Jo Ueyama & Sergio Da Silva, 2023. "Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach," JRFM, MDPI, vol. 16(12), pages 1-21, November.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:496-:d:1288822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/12/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/12/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    3. Tobias Berg & Valentin Burg & Ana Gombović & Manju Puri, 2020. "On the Rise of FinTechs: Credit Scoring Using Digital Footprints," The Review of Financial Studies, Society for Financial Studies, vol. 33(7), pages 2845-2897.
    4. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    5. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    2. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    3. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    4. Vasilios Plakandaras & Ioannis Pragidis & Paris Karypidis, 2024. "Deciphering the U.S. metropolitan house price dynamics," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(2), pages 434-485, March.
    5. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
    6. Campisi, Giovanni & Muzzioli, Silvia & De Baets, Bernard, 2024. "A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices," International Journal of Forecasting, Elsevier, vol. 40(3), pages 869-880.
    7. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    8. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    9. Lei Xu & Qian Liu & Bin Li & Chen Ma, 2022. "Fintech business and firm access to bank loans," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(4), pages 4381-4421, December.
    10. Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    11. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    12. Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
    13. Mustafa, Andy Ali & Lin, Ching-Yang & Kakinaka, Makoto, 2022. "Detecting market pattern changes: A machine learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
    14. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    15. Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
    16. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    17. Ba Chu & Shafiullah Qureshi, 2023. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1567-1609, December.
    18. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    19. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    20. Shuangshuang Fan & Yichao Li & William Mbanyele & Xiufeng Lai, 2025. "Determinants and Pathways for Inclusive Growth in China: Investigation Based on Artificial Intelligence (AI) Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1231-1264, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:496-:d:1288822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.