IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i12p496-d1288822.html
   My bibliography  Save this article

Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach

Author

Listed:
  • Nicolas Suhadolnik

    (Institute of Mathematics and Computer Science, University of Sao Paulo, Sao Carlos 13566-590, Brazil
    Regional Bank for Development of the South Region, Curitiba 80030-900, Brazil)

  • Jo Ueyama

    (Institute of Mathematics and Computer Science, University of Sao Paulo, Sao Carlos 13566-590, Brazil)

  • Sergio Da Silva

    (Graduate Program in Economics, Federal University of Santa Catarina, Florianopolis 88049-970, Brazil)

Abstract

Financial institutions and regulators increasingly rely on large-scale data analysis, particularly machine learning, for credit decisions. This paper assesses ten machine learning algorithms using a dataset of over 2.5 million observations from a financial institution. We also summarize key statistical and machine learning models in credit scoring and review current research findings. Our results indicate that ensemble models, particularly XGBoost, outperform traditional algorithms such as logistic regression in credit classification. Researchers and experts in the subject of credit risk can use this work as a practical reference as it covers crucial phases of data processing, exploratory data analysis, modeling, and evaluation metrics.

Suggested Citation

  • Nicolas Suhadolnik & Jo Ueyama & Sergio Da Silva, 2023. "Machine Learning for Enhanced Credit Risk Assessment: An Empirical Approach," JRFM, MDPI, vol. 16(12), pages 1-21, November.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:496-:d:1288822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/12/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/12/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    3. Tobias Berg & Valentin Burg & Ana Gombović & Manju Puri, 2020. "On the Rise of FinTechs: Credit Scoring Using Digital Footprints," The Review of Financial Studies, Society for Financial Studies, vol. 33(7), pages 2845-2897.
    4. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    2. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    5. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    6. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    7. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    8. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Mar 2023.
    9. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    10. Victor Duarte & Diogo Duarte & Dejanir H. Silva, 2024. "Machine Learning for Continuous-Time Finance," CESifo Working Paper Series 10909, CESifo.
    11. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    12. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    13. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    14. Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2021. "Fundamental ratios as predictors of ESG scores: a machine learning approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1087-1110, December.
    15. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    16. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
    17. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    18. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    19. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    20. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:496-:d:1288822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.