IDEAS home Printed from
   My bibliography  Save this paper

A constrained hierarchical risk parity algorithm with cluster-based capital allocation


  • Johann Pfitzinger

    (Department of Economics, Stellenbosch University)

  • Nico Katzke

    (Department of Economics, Stellenbosch University & Prescient Securities, Cape Town)


Hierarchical Risk Parity (HRP) is a risk-based portfolio optimisation algorithm, which has been shown to generate diversified portfolios with robust out-of-sample properties without the need for a positive-definite return covariance matrix (Lopez de Prado 2016). The algorithm applies machine learning techniques to identify the underlying hierarchical correlation structure of the portfolio, allowing clusters of similar assets to compete for capital. The resulting allocation is both well-diversified over risk sources and intuitively appealing. This paper proposes a method of fully exploiting the information created by the clustering process, achieving enhanced out-of-sample risk and return characteristics. In addition, a practical approach to calculating HRP weights under box and group constraints is introduced. A comprehensive set of portfolio simulations over 6 equity universes demonstrates the appeal of the algorithm for portfolios consisting of 20 - 200 assets. HRP delivers highly diversified allocations with low volatility, low portfolio turnover and competitive performance metrics.

Suggested Citation

  • Johann Pfitzinger & Nico Katzke, 2019. "A constrained hierarchical risk parity algorithm with cluster-based capital allocation," Working Papers 14/2019, Stellenbosch University, Department of Economics.
  • Handle: RePEc:sza:wpaper:wpapers328

    Download full text from publisher

    File URL:
    File Function: First version, 2019
    Download Restriction: no

    References listed on IDEAS

    1. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    2. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. MohammadAmin Fazli & Parsa Alian & Ali Owfi & Erfan Loghmani, 2021. "RPS: Portfolio Asset Selection using Graph based Representation Learning," Papers 2111.15634,

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," LEM Papers Series 2021/45, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    3. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    4. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    5. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822,
    6. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    7. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    8. N. C. Suganya & G. A. Vijayalakshmi Pai, 2010. "Pareto‐archived evolutionary wavelet network for financial constrained portfolio optimization," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 17(2), pages 59-90, April.
    9. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    10. Yanhong Guo & Shuai Jiang & Wenjun Zhou & Chunyu Luo & Hui Xiong, 2021. "A predictive indicator using lender composition for loan evaluation in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    11. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    12. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    13. Vladimir Dombrovskii & Tatyana Obedko, 2014. "Portfolio Optimization in the Financial Market with Correlated Returns under Constraints, Transaction Costs and Different Rates for Borrowing and Lending," Papers 1410.8042,
    14. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621,
    15. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.
    16. Gatfaoui, Hayette, 2019. "Diversifying portfolios of U.S. stocks with crude oil and natural gas: A regime-dependent optimization with several risk measures," Energy Economics, Elsevier, vol. 80(C), pages 132-152.
    17. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    18. Ahmet Sensoy & Duc Khuong Nguyen & Ahmed Rostom & Erk Hacihasanoglu, 2019. "Dynamic integration and network structure of the EMU sovereign bond markets," Annals of Operations Research, Springer, vol. 281(1), pages 297-314, October.
    19. Longfeng Zhao & Chao Wang & Gang-Jin Wang & H. Eugene Stanley & Lin Chen, 2021. "Community detection and portfolio optimization," Papers 2112.13383,
    20. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.

    More about this item


    Risk Parity; Diversification; Portfolio Optimisation; Clustering;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sza:wpaper:wpapers328. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melt van Schoor (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.