IDEAS home Printed from https://ideas.repec.org/p/sol/wpaper/2013-90696.html
   My bibliography  Save this paper

Partial Least Square Discriminant Analysis (PLS-DA) for bankruptcy prediction

Author

Listed:
  • Carlos Serrano-Cinca
  • Begoña Gutiérrez-Nieto

Abstract

This paper uses Partial Least Square Discriminant Analysis (PLS-DA) for the prediction of the 2008 USA banking crisis. PLS regression transforms a set of correlated explanatory variables into a new set of uncorrelated variables, which is appropriate in the presence of multicollinearity. PLS-DA performs a PLS regression with a dichotomous dependent variable. The performance of this technique is compared to the performance of 8 algorithms widely used in bankruptcy prediction. In terms of accuracy, precision, F-score, Type I error and Type II error, results are similar; no algorithm outperforms the others. Behind performance, each algorithm assigns a score to each bank and classifies it as solvent or failed. These results have been analyzed by means of contingency tables, correlations, cluster analysis and reduction dimensionality techniques. PLS-DA results are very close to those obtained by Linear Discriminant Analysis and Support Vector Machine.

Suggested Citation

  • Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto, 2011. "Partial Least Square Discriminant Analysis (PLS-DA) for bankruptcy prediction," Working Papers CEB 11-024, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:sol:wpaper:2013/90696
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/90696/1/wp11024.pdf
    File Function: wp11024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster D.P. & Stine R.A., 2004. "Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 303-313, January.
    2. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    3. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    4. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    5. Marais, Ml & Patell, Jm & Wolfson, Ma, 1984. "The Experimental-Design Of Classification Models - An Application Of Recursive Partitioning And Bootstrapping To Commercial Bank Loan Classifications," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 87-114.
    6. P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    8. Lo, Andrew W., 1986. "Logit versus discriminant analysis : A specification test and application to corporate bankruptcies," Journal of Econometrics, Elsevier, vol. 31(2), pages 151-178, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhen Jia, 2015. "Estudo cross-country sobre os fatores determinantes da crise financeira bancária," RAE - Revista de Administração de Empresas, FGV-EAESP Escola de Administração de Empresas de São Paulo (Brazil), vol. 55(5), September.
    2. Maria Jesus Segovia Vargas & Mara del Mar Camacho Miñano, 2018. "Analysis of corporate viability in the pre-bankruptcy proceedings," Contaduría y Administración, Accounting and Management, vol. 63(1), pages 29-30, Enero - M.
    3. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    4. Yi-Shu Wang & Xue Jiang & Zhen-Jia-Liu, 2016. "Bank Failure Prediction Models for the Developing and Developed Countries: Identifying the Economic Value Added for Predicting Failure," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(9), pages 522-533, September.
    5. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    6. Maria Jesus Segovia Vargas & Mara del Mar Camacho Miñano, 2018. "Análisis de la viabilidad empresarial en el preconcurso de acreedores," Contaduría y Administración, Accounting and Management, vol. 63(1), pages 27-28, Enero - M.
    7. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    3. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    4. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    5. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    6. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    7. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    8. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    9. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
    10. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    11. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," JRFM, MDPI, vol. 1(1), pages 1-34, December.
    12. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    13. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    14. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    15. Veres Ferrer, Ernesto Jesús & Labatut Serer, Gregorio & Pozuelo Campillo, Jose, 2009. "Hacia una ordenación de las pequeñas empresas atendiendo a su posible situación de fracaso/Towards a Ranking of Smaller Companies According to Their Failure Risk," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 775(18á)-77, Diciembre.
    16. Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
    17. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    19. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    20. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.

    More about this item

    Keywords

    bankruptcy; financial ratios; banking crisis; solvency; data mining; PLS-DA;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sol:wpaper:2013/90696. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cebulbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/cebulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.