IDEAS home Printed from https://ideas.repec.org/p/sef/csefwp/350.html
   My bibliography  Save this paper

Asymptotic Behavior of Regularized OptimizationProblems with Quasi-variational Inequality Constraints

Author

Listed:

Abstract

The great interest into hierarchical optimization problems and the increasing use of game theory in many economic or engineering applications led to investigate optimization problems with constraints described by the solutions to a quasi-variational inequality (variational problems having constraint sets depending on their own solutions, present in many applications as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium). These problems are bilevel problems such that at the lower level a parametric quasi-variational inequality is solved (by one or more followers) meanwhile at the upper level the leader solves a scalar optimization problem with constraints determined by the solutions set to the lower level problem. In this paper, mainly motivated by the use of approximation methods in infinite dimensional spaces (penalization, discretization, Moreau-Yosida regularization ...), we are interested in the asymptotic behavior of the sequence of the infimal values and of the sequence of the minimum points of the upper level when a general scheme of perturbations is considered. Unfortunately, we show that the global convergence of exact values and exact solutions of the perturbed bilevel problems cannot generally be achieved. Thus, we introduce suitable concepts of regularized optimization problems with quasi-variational inequality constraints and we investigate, in Banach spaces, the behavior of the approximate infimal values and of the approximate solutions under and without perturbations.

Suggested Citation

  • M. Beatrice Lignola & Jacqueline Morgan, 2013. "Asymptotic Behavior of Regularized OptimizationProblems with Quasi-variational Inequality Constraints," CSEF Working Papers 350, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:350
    as

    Download full text from publisher

    File URL: http://www.csef.it/WP/wp350.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacqueline Morgan & Fabien Prieur, 2013. "Global emission ceiling versus international cap and trade: what is the most efficient system to solve the climate change issue?," Post-Print hal-02649260, HAL.
    2. Jacqueline Morgan & Fabien Prieur, 2011. "Global emission ceiling versus international cap and trade: What is the most efficient system when countries act non-cooperatively?," CSEF Working Papers 275, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    3. M. B. Lignola & J. Morgan, 1997. "Stability of Regularized Bilevel Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(3), pages 575-596, June.
    4. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    5. H. Bonnel & J. Morgan, 2006. "Semivectorial Bilevel Optimization Problem: Penalty Approach," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 365-382, December.
    6. M. B. Lignola & J. Morgan, 1999. "Generalized Variational Inequalities with Pseudomonotone Operators Under Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 213-220, April.
    7. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.
    8. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    9. Laurent Drouet & Alain Haurie & Francesco Moresino & Jean-Philippe Vial & Marc Vielle & Laurent Viguier, 2008. "An oracle based method to compute a coupled equilibrium in a model of international climate policy," Computational Management Science, Springer, vol. 5(1), pages 119-140, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Beatrice Lignola & Jacqueline Morgan, 2012. "Approximating Security Values of MinSup Problems with Quasi-variational Inequality Constraints," CSEF Working Papers 321, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 09 Oct 2014.
    2. Francesco Caruso & M. Beatrice Lignola & Jacqueline Morgan, 2020. "Regularization and Approximation Methods in Stackelberg Games and Bilevel Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 77-138, Springer.
    3. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.
    4. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    5. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
    6. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2019. "Subgame Perfect Nash Equilibrium: A Learning Approach via Costs to Move," Dynamic Games and Applications, Springer, vol. 9(2), pages 416-432, June.
    7. Ming Hu & Masao Fukushima, 2011. "Variational Inequality Formulation of a Class of Multi-Leader-Follower Games," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 455-473, December.
    8. Jacek B. Krawczyk & Mabel Tidball, 2016. "Economic Problems with Constraints: How Efficiency Relates to Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-19, December.
    9. Boucekkine, Raouf & Krawczyk, Jacek B. & Vallée, Thomas, 2010. "Towards an understanding of tradeoffs between regional wealth, tightness of a common environmental constraint and the sharing rules," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1813-1835, September.
    10. Gaoxi Li & Zhongping Wan, 2018. "On Bilevel Programs with a Convex Lower-Level Problem Violating Slater’s Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 820-837, December.
    11. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    12. Sauli Ruuska & Kaisa Miettinen & Margaret M. Wiecek, 2012. "Connections Between Single-Level and Bilevel Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 60-74, April.
    13. Francisco Facchinei & Lorenzo Lampariello, 2011. "Partial penalization for the solution of generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 50(1), pages 39-57, May.
    14. Elnaz Kanani Kuchesfehani & Georges Zaccour, 2015. "S-adapted Equilibria in Games Played Over Event Trees with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 644-658, August.
    15. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    16. Gaoxi Li & Xinmin Yang, 2021. "Convexification Method for Bilevel Programs with a Nonconvex Follower’s Problem," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 724-743, March.
    17. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    18. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    19. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.
    20. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: https://edirc.repec.org/data/cssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.