IDEAS home Printed from https://ideas.repec.org/p/sce/scecf6/_054.html
   My bibliography  Save this paper

Pricing for Electronic Commerce

Author

Listed:
  • Dale Stahl

    (The University of Texas at Austin)

Abstract

Perhaps the greatest technological innovation of the next several decades will be universal access and utilization of the Internet. Already congestion is becoming a serious impediment to efficient utilization. We introduce a stochastic equilibrium concept for a general mathematical model of the Internet, and demonstrate that the efficient social welfare maximizing stochastic allocation of Internet traffic can be supported by optimal congestion prices. We further demonstrate via simulation modelling that approximately optimal prices can be readily computed and implemented in a decentralized system. We further propose simulation modeling to study the impact of private strategic pricing and public policies.

Suggested Citation

  • Dale Stahl, "undated". "Pricing for Electronic Commerce," Computing in Economics and Finance 1996 _054, Society for Computational Economics.
  • Handle: RePEc:sce:scecf6:_054
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Stahl, Dale II, 1986. "Stochastic decentralization of competitive allocations," Economics Letters, Elsevier, vol. 22(2-3), pages 111-113.
    2. Mackie-Mason, J.K. & Varian, H.R., 1993. "Pricing the Internet," Memorandum 1993_020, Oslo University, Department of Economics.
    3. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    4. Hau Leung Lee & Morris A. Cohen, 1985. "Multi-Agent Customer Allocation in a Stochastic Service System," Management Science, INFORMS, vol. 31(6), pages 752-763, June.
    5. Intriligator, Michael D., 2000. "Mathematical programming with applications to economics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 4, volume 1, chapter 2, pages 53-91, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Alok & Stahl, Dale O. & Whinston, Andrew B., 1997. "A stochastic equilibrium model of internet pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 697-722, May.
    2. Nicos Savva & Tolga Tezcan & Özlem Yıldız, 2019. "Can Yardstick Competition Reduce Waiting Times?," Management Science, INFORMS, vol. 65(7), pages 3196-3215, July.
    3. Grossman, Thomas A. & Brandeau, Margaret L., 2002. "Optimal pricing for service facilities with self-optimizing customers," European Journal of Operational Research, Elsevier, vol. 141(1), pages 39-57, August.
    4. Eitan Altman & Nahum Shimkin, 1998. "Individual Equilibrium and Learning in Processor Sharing Systems," Operations Research, INFORMS, vol. 46(6), pages 776-784, December.
    5. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).
    6. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    7. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    8. Refael Hassin, 2022. "Profit maximization and cost balancing in queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 429-431, April.
    9. Balachandran, Kashi R. & Radhakrishnan, Suresh, 1996. "Cost of congestion, operational efficiency and management accounting," European Journal of Operational Research, Elsevier, vol. 89(2), pages 237-245, March.
    10. Jalili Marand, Ata & Hoseinpour, Pooya, 2024. "A congested facility location problem with strategic customers," European Journal of Operational Research, Elsevier, vol. 318(2), pages 442-456.
    11. Kyle Y. Lin, 2003. "Decentralized admission control of a queueing system: A game‐theoretic model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 702-718, October.
    12. Kyle Y. Lin & Sheldon M. Ross, 2003. "Admission Control with Incomplete Information of a Queueing System," Operations Research, INFORMS, vol. 51(4), pages 645-654, August.
    13. Narine Badasyan & Subhadip Chakrabarti, 2003. "Private Peering Among Internet Backbone Providers," Industrial Organization 0301002, University Library of Munich, Germany, revised 20 Jan 2003.
    14. Fajardo, Val Andrei & Drekic, Steve, 2015. "Controlling the workload of M/G/1 queues via the q-policy," European Journal of Operational Research, Elsevier, vol. 243(2), pages 607-617.
    15. Platz, Trine Tornøe & Østerdal, Lars Peter, 2017. "The curse of the first-in–first-out queue discipline," Games and Economic Behavior, Elsevier, vol. 104(C), pages 165-176.
    16. Eyster, Erik & Galeotti, Andrea & Kartik, Navin & Rabin, Matthew, 2014. "Congested observational learning," Games and Economic Behavior, Elsevier, vol. 87(C), pages 519-538.
    17. William H. Sandholm, 2005. "Negative Externalities and Evolutionary Implementation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 885-915.
    18. Vasiliki Kostami & Sampath Rajagopalan, 2014. "Speed–Quality Trade-Offs in a Dynamic Model," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 104-118, February.
    19. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    20. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf6:_054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.