IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Beyond Newton: Robust Methods For Solving Large Nonlinear Models In Troll

Listed author(s):
  • Peter Hollinger

    (Intex Solutions, Inc.)

Registered author(s):

    Newton's Method is an important algorithm for solving nonlinear systems of equations. For any solution algorithm, the principle concerns are robustness (finding a solution reliably) and efficiency (finding a solution quickly). Newton is simple in principle, but a useful implementation must deal with a variety of practical and theoretical obstacles.By using partial derivatives, Newton's Method can model the shape of the residual surface to provide quadratic convergence near the solution: the number of correct digits doubles each iteration. But far from the solution, the full Newton step may go too far, leading to divergence or oscillation. Or the full step may be illegal, leading to economic nonsense like negative prices and numerical problems like taking the log of a negative number. Automatic damping -- taking shorter steps along the Newton direction -- can improve global convergence in such cases.The most expensive part of Newton's Method is factoring the Jacobian matrix. The Jacobian can be very large in contemporary macroeconometric models, particularly forward-looking models that introduce simultaneity across time periods as well as between equations. Newton is impractical for such large models unless it can exploit the sparsity of the Jacobian. Sparse direct methods can be applied to the entire Jacobian; one advantage of direct methods is that after the first iteration, subsequent factorings can be extremely fast. An alternative is iterative Krylov subspace methods; their small memory requirements are an advantage, but they may fail to converge. In the case of forward-looking models, the stacked Jacobian has a block band-diagonal structure that can be exploited by direct methods or for preconditioning iterative methods.his paper describes enhancements to Newton's Method used in the TROLL modeling system and illustrates them with a variety of contemporary models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2000 with number 308.

    in new window

    Date of creation: 05 Jul 2000
    Handle: RePEc:sce:scecf0:308
    Contact details of provider: Postal:
    CEF 2000, Departament d'Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas, 25,27, 08005, Barcelona, Spain

    Fax: +34 93 542 17 46
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hamid Faruqee & Douglas Laxton & Bart Turtelboom & Peter Isard & Eswar S Prasad, 1998. "Multimod Mark III; The Core Dynamic and Steady State Model," IMF Occasional Papers 164, International Monetary Fund.
    2. Coletti, D. & Hunt, B. & Rose, D. & Tetlow, R., 1996. "The Bank of Canada's New Quarterly Projection Model. Part 3 , the Dynamic Model : QPM," Technical Reports 75, Bank of Canada.
    3. Juillard, Michel, 1996. "Dynare : a program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm," CEPREMAP Working Papers (Couverture Orange) 9602, CEPREMAP.
    4. Boucekkine, Raouf, 1995. "An alternative methodology for solving nonlinear forward-looking models," Journal of Economic Dynamics and Control, Elsevier, vol. 19(4), pages 711-734, May.
    5. Juillard, Michel & Laxton, Douglas & McAdam, Peter & Pioro, Hope, 1998. "An algorithm competition: First-order iterations versus Newton-based techniques," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1291-1318, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.