IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/495.html
   My bibliography  Save this paper

Modelling and forecasting short-term electricity load: a two step methodology

Author

Listed:
  • Lacir J. Soares

    (Department of Electrical Engineering)

  • Marcelo Cunha Medeiros

    (Department of Economics PUC-Rio)

Abstract

The goal of this paper is to develop a forecasting model of the hourly electricity load demand in the area covered by an utility company located in the southeast of Brazil. A di®erent model is constructed for each hour of day, thus there are 24 di®erent models. Each model is based on a decomposition of the daily series of each hour in two components. The ¯rst component is purely deterministic and is related to trends, seasonality, and special days e®ect. The second one is stochastic and follows a linear autoregressive model. The multi-step forecasting performance of the proposed methodology is compared with a benchmark model and the results indicate that our proposal is a useful tool for electricity load forecasting.

Suggested Citation

  • Lacir J. Soares & Marcelo Cunha Medeiros, 2005. "Modelling and forecasting short-term electricity load: a two step methodology," Textos para discussão 495, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:495
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td495.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    2. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    3. Dionísio Dias Carneiro, 2000. "Inflation targeting in Brazil: what difference does a year make?," Textos para discussão 429, Department of Economics PUC-Rio (Brazil).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    7. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    8. Fiebig, Denzil G. & Bartels, Robert & Aigner, Dennis J., 1991. "A random coefficient approach to the estimation of residential end-use load profiles," Journal of Econometrics, Elsevier, vol. 50(3), pages 297-327, December.
    9. Joanna Nowicka-Zagrajek & Rafal Weron, 2002. "Modeling electricity loads in California: ARMA models with hyperbolic noise," HSC Research Reports HSC/02/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    2. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    3. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    4. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    5. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    6. Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    2. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    3. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    4. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    5. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    6. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    7. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    8. repec:qut:auncer:wp103 is not listed on IDEAS
    9. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    10. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    12. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).
    14. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    15. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    16. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    17. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    18. Ibrahim Mohammed & Chioma Nwafor, 2014. "Stock Market Consequences of the Suspension of the Central Bank of Nigeria’s Governor," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(4 (Winter), pages 371-394.
    19. P. Kearns & A.R. Pagan, 1993. "Australian Stock Market Volatility: 1875–1987," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 163-178, June.
    20. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    21. Randolph & Xiao Qin & Tan Gee Kwang, 2004. "Unit Root Tests with Markov-Switching," Econometric Society 2004 Australasian Meetings 145, Econometric Society.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.