IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Long-Term Risks and Short-Term Regulations: Modeling the Transition from Enhanced Oil Recovery to Geologic Carbon Sequestration

Listed author(s):
  • Bandza, Alexander J.
  • Vajjhala, Shalini P.


    (Resources for the Future)

Recent policy debates suggest that geologic carbon sequestration (GS) likely will play an important role in a carbon-constrained future. As GS evolves from the analogous technologies and practices of enhanced oil recovery (EOR) operations to a long-term, dedicated emissions mitigation option, regulations must evolve simultaneously to manage the risks associated with underground migration and surface tresspass of carbon dioxide (CO2). In this paper, we develop a basic engineering-economic model of four illustrative strategies available to a sophisticated site operator to better understand key deployment pathways in the transition from EOR to GS operations. All of these strategies focus on whether or not a sophisticated site operator would store CO2 in a geologic formation. We evaluate these strategies based on illustrative scenarios of (a) oil and CO2 prices; (b) leakage estimates; and (c) transportation, injection, and monitoring costs, as obtained from our understanding of the literature. Major results reveal that CO2 storage in depleted hydrocarbon reservoirs after oil recovery is associated with the greatest net revenues (i.e., the “most-preferred” strategy) under a range of scenarios. This finding ultimately suggests that GS regulatory design should anticipate the use of the potentially leakiest, or “worst,” sites first.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Resources For the Future in its series Discussion Papers with number dp-08-29-rev.

in new window

Date of creation: 23 Jul 2010
Handle: RePEc:rff:dpaper:dp-08-29-rev
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Minh Ha-Duong & David Keith, 2003. "Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs," Post-Print halshs-00003927, HAL.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-08-29-rev. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.