IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2010-06.html
   My bibliography  Save this paper

Stochastic Volatility Jump-Diffusions for Equity Index Dynamics

Author

Listed:
  • Andreas Kaeck

    (ICMA Centre, Henley Business School, University of Reading)

  • Carol Alexander

    (ICMA Centre, Henley Business School, University of Reading)

Abstract

This paper examines the ability of twelve different continuous-time two-factor models with mean-reverting stochastic volatility to capture the dynamics of the S&P 500 and three European equity indices. The stochastic volatility models are the square root variance, GARCH, and log volatility diffusions, and each is augmented with price and volatility jump extensions. Parameter estimation is by Markov Chain Monte Carlo using daily spot index returns from 1987 to 2010. For each index we find that GARCH diffusions augmented with correlated price and volatility jumps outperform other specifications with respect to all the tests we perform. The European indices have similar dynamics, which are relatively easy to capture using several of our specifications, but the S&P 500 index has different dynamics and here the GARCH-jump specification is very clearly superior.

Suggested Citation

  • Andreas Kaeck & Carol Alexander, 2010. "Stochastic Volatility Jump-Diffusions for Equity Index Dynamics," ICMA Centre Discussion Papers in Finance icma-dp2010-06, Henley Business School, Reading University.
  • Handle: RePEc:rdg:icmadp:icma-dp2010-06
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/files/discussion-papers/dp201006.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    5. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    6. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    10. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    11. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    14. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    15. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    16. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    17. Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
    18. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    19. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    20. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
    21. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    22. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2010-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marie Pearson). General contact details of provider: http://edirc.repec.org/data/bsrdguk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.