IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1533.html
   My bibliography  Save this paper

Norm Constrained Empirical Portfolio Optimization with Stochastic Dominance: Robust Optimization Non-Asymptotics

Author

Listed:
  • Stelios Arvanitis

    (Department of Economics, AUEB)

Abstract

The present note provides an initial theoretical explanation of the way norm regularizations may provide a means of controlling the non-asymptotic probability of False Dominance classification for empirically optimal portfolios satisfying empirical Stochastic Dominance restrictions in an iid setting. It does so via a dual characterization of the norm-constrained problem, as a problem of Distributional Robust Optimization. This enables the use of concentration inequalities involving the Wasserstein distance from the empirical distribution, to obtain an upper bound for the non-asymptotic probability of False Dominance classification. This leads to information about the minimal sample size required for this probability to be dominated by a predetermined significance level.

Suggested Citation

  • Stelios Arvanitis, 2025. "Norm Constrained Empirical Portfolio Optimization with Stochastic Dominance: Robust Optimization Non-Asymptotics," Working Paper 1533, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1533
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1533.pdf
    File Function: First version 2025
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    2. Thierry Post & Miloš Kopa, 2017. "Portfolio Choice Based on Third-Degree Stochastic Dominance," Management Science, INFORMS, vol. 63(10), pages 3381-3392, October.
    3. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    4. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    5. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    6. Thierry Post & Iňaki Rodríguez Longarela, 2021. "Risk Arbitrage Opportunities for Stock Index Options," Operations Research, INFORMS, vol. 69(1), pages 100-113, January.
    7. Stelios Arvanitis & Thierry Post, 2024. "Stochastic Arbitrage Opportunities: Set Estimation and Statistical Testing," Mathematics, MDPI, vol. 12(4), pages 1-19, February.
    8. Stelios Arvanitis & Thierry Post, 2024. "Generalized Stochastic Arbitrage Opportunities," Management Science, INFORMS, vol. 70(7), pages 4629-4648, July.
    9. Stelios Arvanitis & Olivier Scaillet & Nikolas Topaloglou, 2024. "Spanning Analysis of Stock Market Anomalies Under Prospect Stochastic Dominance," Management Science, INFORMS, vol. 70(9), pages 6002-6025, September.
    10. Yongjae Lee & Min Jeong Kim & Jang Ho Kim & Ju Ri Jang & Woo Chang Kim, 2020. "Sparse and robust portfolio selection via semi-definite relaxation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 687-699, May.
    11. James E. Hodder & Jens Carsten Jackwerth & Olga Kolokolova, 2015. "Improved Portfolio Choice Using Second-Order Stochastic Dominance," Review of Finance, European Finance Association, vol. 19(4), pages 1623-1647.
    12. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    13. MARCHAND, Hugues & MARTIN, Alexander & WEISMANTEL, Robert & WOLSEY, Laurence, 2002. "Cutting planes in integer and mixed integer programming," LIDAM Reprints CORE 1567, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yi & Post, Thierry, 2022. "Optimal portfolio choice for higher-order risk averters," Journal of Banking & Finance, Elsevier, vol. 137(C).
    2. Stelios Arvanitis & Thierry Post & Nikolas Topaloglou, 2021. "Stochastic Bounds for Reference Sets in Portfolio Analysis," Management Science, INFORMS, vol. 67(12), pages 7737-7754, December.
    3. Wu, Zhongming & Sun, Kexin & Ge, Zhili & Allen-Zhao, Zhihua & Zeng, Tieyong, 2024. "Sparse portfolio optimization via ℓ1 over ℓ2 regularization," European Journal of Operational Research, Elsevier, vol. 319(3), pages 820-833.
    4. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    5. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2018. "Portfolio optimization based on stochastic dominance and empirical likelihood," Journal of Econometrics, Elsevier, vol. 206(1), pages 167-186.
    6. Shi, Fangquan & Shu, Lianjie & He, Fangyi & Huang, Wenpo, 2025. "Improving minimum-variance portfolio through shrinkage of large covariance matrices," Economic Modelling, Elsevier, vol. 144(C).
    7. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    8. Thierry Post & Iňaki Rodríguez Longarela, 2021. "Risk Arbitrage Opportunities for Stock Index Options," Operations Research, INFORMS, vol. 69(1), pages 100-113, January.
    9. Hyunglip Bae & Haeun Jeon & Minsu Park & Yongjae Lee & Woo Chang Kim, 2025. "A Cholesky decomposition-based asset selection heuristic for sparse tangent portfolio optimization," Papers 2502.11701, arXiv.org.
    10. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    11. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    12. Conlon, Thomas & Cotter, John & Kovalenko, Illia & Post, Thierry, 2023. "A financial modeling approach to industry exchange-traded funds selection," Journal of Empirical Finance, Elsevier, vol. 74(C).
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    15. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    16. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    17. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    18. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    19. Karstanje, Dennis & Sojli, Elvira & Tham, Wing Wah & van der Wel, Michel, 2013. "Economic valuation of liquidity timing," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5073-5087.
    20. Yu-Min Yen, 2010. "A Note on Sparse Minimum Variance Portfolios and Coordinate-Wise Descent Algorithms," Papers 1005.5082, arXiv.org, revised Sep 2013.

    More about this item

    Keywords

    Portfolio optimization; Stochastic dominance; â„“p regularization; Wasserstein distance; Distributionally robust optimization; Concentration inequality; False dominance classification;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.