IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v233y2025icp400-412.html
   My bibliography  Save this article

Multi-period mean–variance portfolio optimization with capital injections

Author

Listed:
  • Shi, Longyu
  • Wang, Yunyun
  • Li, Wenyue
  • Zhang, Zhimin

Abstract

In this study, we explore the portfolio optimization problem where the investors initially allocate portions of their capital across a large asset pool, followed by gradual capital injections over the subsequent periods. We introduce a multi-period mean–variance model with capital injections to develop a sparse long-term investment strategy within this framework. This model adopts the fused Lasso technique, integrating two ℓ1 penalty terms designed to lower both holding and trading costs. We utilize a two-block alternating direction method of multipliers algorithm to solve this complex, non-smooth optimization problem involving multiple variables. A thorough analysis of the convergence of the algorithm is provided. In addition, we empirically validate the efficacy of our model using two real datasets, demonstrating its practical applicability and effectiveness in real-world scenarios.

Suggested Citation

  • Shi, Longyu & Wang, Yunyun & Li, Wenyue & Zhang, Zhimin, 2025. "Multi-period mean–variance portfolio optimization with capital injections," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 400-412.
  • Handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:400-412
    DOI: 10.1016/j.matcom.2025.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhifeng Dai & Jie Kang, 2022. "Some new efficient mean–variance portfolio selection models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4784-4796, October.
    2. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    3. Ye, Gui-Bo & Xie, Xiaohui, 2011. "Split Bregman method for large scale fused Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1552-1569, April.
    4. Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    7. Yongjae Lee & Min Jeong Kim & Jang Ho Kim & Ju Ri Jang & Woo Chang Kim, 2020. "Sparse and robust portfolio selection via semi-definite relaxation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 687-699, May.
    8. Corsaro, Stefania & De Simone, Valentina & Marino, Zelda, 2021. "Split Bregman iteration for multi-period mean variance portfolio optimization," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    10. Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
    11. Kirkby, J. Lars & Mitra, Sovan & Nguyen, Duy, 2020. "An analysis of dollar cost averaging and market timing investment strategies," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1168-1186.
    12. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    13. Stefania Corsaro & Valentina De Simone & Zelda Marino & Francesca Perla, 2020. "$$l_1$$ l 1 -Regularization for multi-period portfolio selection," Annals of Operations Research, Springer, vol. 294(1), pages 75-86, November.
    14. Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2024. "Learning fused lasso parameters in portfolio selection via neural networks," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4281-4299, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhongming & Sun, Kexin & Ge, Zhili & Allen-Zhao, Zhihua & Zeng, Tieyong, 2024. "Sparse portfolio optimization via ℓ1 over ℓ2 regularization," European Journal of Operational Research, Elsevier, vol. 319(3), pages 820-833.
    2. Zhongming Wu & Guoyu Xie & Zhili Ge & Valentina De Simone, 2024. "Nonconvex multi-period mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 332(1), pages 617-644, January.
    3. Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2022. "l 1 -Regularization in Portfolio Selection with Machine Learning," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    4. Farshad Noravesh, 2022. "Sparse Non-Convex Optimization For Higher Moment Portfolio Management," Papers 2201.01227, arXiv.org, revised Jan 2022.
    5. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    6. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
    7. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    8. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    9. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    10. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    11. Zhang, Caibin & Liang, Zhibin, 2022. "Optimal time-consistent reinsurance and investment strategies for a jump–diffusion financial market without cash," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    13. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
    14. In, Francis & Kim, Sangbae & Gençay, Ramazan, 2011. "Investment horizon effect on asset allocation between value and growth strategies," Economic Modelling, Elsevier, vol. 28(4), pages 1489-1497, July.
    15. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    16. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    17. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    18. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    19. Chen, Ping & Yam, S.C.P., 2013. "Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 871-883.
    20. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:400-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.