IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202539.html
   My bibliography  Save this paper

Implied Skewness of the Treasury Yield: A New Predictor for Stock Market Bubbles

Author

Listed:
  • Onur Polat

    (Department of Public Finance, Bilecik Seyh Edebali University, Bilecik, Turkiye)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1102, USA)

  • Elie Bouri

    (School of Business, Lebanese American University, Lebanon)

Abstract

This paper extends the discussion on the predictive role of bond market information over the stock market to a novel context by proposing a new predictor of stock market bubbles for the United States (US), namely the implied skewness of the Treasury yield. Using daily data from January 1988 to April 2025, we first implement the Multi-Scale Log-Period Power Law Confidence Indicator (MS-LPPLS-CI) framework to detect positive and negative bubbles at the short-, medium- and long-term. Next, employing a nonparametric causality-in-quantiles framework, we show that bond market signals inferred from the implied skewness of the Treasury yield carry significant predictive content for US and international stock market bubbles. While the predictive effect of Treasury yield skewness is found to be asymmetric across the short-, medium-, and long-term of the positive and negative bubble indicators, the strongest influence is observed at the lowest conditional quantiles of the bubble indicators, suggesting that bond market information captured by forward-looking skewness of interest rate implied by Treasury options can be used to forecast impending crashes in the stock market. These results hold when considering the remaining G7 and BRICS countries, providing support for the determinant role of interest rate signals by the Fed over risky asset dynamics in global stock markets and can be used by investors and policy authorities to have timely insights on imminent boom-bust cycles.

Suggested Citation

  • Onur Polat & Rangan Gupta & Riza Demirer & Elie Bouri, 2025. "Implied Skewness of the Treasury Yield: A New Predictor for Stock Market Bubbles," Working Papers 202539, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202539
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp_2025_39.zp274368.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balcilar, Mehmet & Gupta, Rangan & Wohar, Mark E., 2017. "Common cycles and common trends in the stock and oil markets: Evidence from more than 150years of data," Energy Economics, Elsevier, vol. 61(C), pages 72-86.
    2. Hans Dewachter & Leonardo Iania & Marco Lyrio, 2014. "Information In The Yield Curve: A Macro‐Finance Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 42-64, January.
    3. Michael Bauer & Mikhail Chernov, 2024. "Interest Rate Skewness and Biased Beliefs," Journal of Finance, American Finance Association, vol. 79(1), pages 173-217, February.
    4. Hamilton, James D & Kim, Dong Heon, 2002. "A Reexamination of the Predictability of Economic Activity Using the Yield Spread," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 340-360, May.
    5. Huang, Darien & Kilic, Mete, 2019. "Gold, platinum, and expected stock returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 50-75.
    6. Koijen, Ralph S.J. & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2017. "The cross-section and time series of stock and bond returns," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 50-69.
    7. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    8. Wei-Fong Pan, 2020. "Does Investor Sentiment Drive Stock Market Bubbles? Beware of Excessive Optimism!," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(1), pages 27-41, January.
    9. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    10. van Eyden, Reneé & Gupta, Rangan & Nielsen, Joshua & Bouri, Elie, 2023. "Investor sentiment and multi-scale positive and negative stock market bubbles in a panel of G7 countries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    11. Malcolm Baker & Jeffrey Wurgler, 2012. "Comovement and Predictability Relationships Between Bonds and the Cross-section of Stocks," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 2(1), pages 57-87.
    12. Demirer, Riza & Gabauer, David & Gupta, Rangan & Nielsen, Joshua, 2024. "Gold, platinum and the predictability of bubbles in global stock markets," Resources Policy, Elsevier, vol. 90(C).
    13. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    14. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    15. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    16. Narayan, Paresh Kumar & Sharma, Susan Sunila & Phan, Dinh Hoang Bach, 2016. "Asset price bubbles and economic welfare," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 139-148.
    17. Caraiani, Petre & Gupta, Rangan & Nel, Jacobus & Nielsen, Joshua, 2023. "Monetary policy and bubbles in G7 economies using a panel VAR approach: Implications for sustainable development," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 133-155.
    18. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    19. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirer, Riza & Gabauer, David & Gupta, Rangan & Nielsen, Joshua, 2024. "Gold, platinum and the predictability of bubbles in global stock markets," Resources Policy, Elsevier, vol. 90(C).
    2. Oguzhan Cepni & Rangan Gupta & Jacobus Nel & Joshua Nielsen, 2025. "Monetary policy shocks and multi-scale positive and negative bubbles in an emerging country: the case of India," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-25, December.
    3. Riza Demirer & David Gabauer & Rangan Gupta & Joshua Nielsen, 2023. "Gold-to-Platinum Price Ratio and the Predictability of Bubbles in Financial Markets," Working Papers 202317, University of Pretoria, Department of Economics.
    4. Matteo Foglia & Rangan Gupta & Petre Caraiani & Vincenzo Pacelli, 2025. "Time-Varying Spillover of Multi-Scale Positive and Negative Bubbles in Stock and Oil Markets," Working Papers 202534, University of Pretoria, Department of Economics.
    5. Bouri, Elie & Demirer, Riza & Gupta, Rangan & Wohar, Mark E., 2021. "Gold, platinum and the predictability of bond risk premia," Finance Research Letters, Elsevier, vol. 38(C).
    6. Caraiani, Petre & Gupta, Rangan & Nel, Jacobus & Nielsen, Joshua, 2023. "Monetary policy and bubbles in G7 economies using a panel VAR approach: Implications for sustainable development," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 133-155.
    7. Reneé van Eyden & Rangan Gupta & Xin Sheng & Joshua Nielsen, 2025. "Predicting Multi-Scale Positive and Negative Stock Market Bubbles in a Panel of G7 Countries: The Role of Oil Price Uncertainty," Economies, MDPI, vol. 13(2), pages 1-25, January.
    8. Gupta, Rangan & Nel, Jacobus & Nielsen, Joshua & Pierdzioch, Christian, 2025. "Stock market volatility and multi-scale positive and negative bubbles," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    9. Çepni, Oğguzhan & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2020. "Time-varying risk aversion and the predictability of bond premia," Finance Research Letters, Elsevier, vol. 34(C).
    10. Jaewon Choi & Matthew P. Richardson & Robert F. Whitelaw, 2014. "On the Fundamental Relation Between Equity Returns and Interest Rates," NBER Working Papers 20187, National Bureau of Economic Research, Inc.
    11. Balcilar, Mehmet & Gupta, Rangan & Wang, Shixuan & Wohar, Mark E., 2020. "Oil price uncertainty and movements in the US government bond risk premia," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Wilton Bernardino & João B. Amaral & Nelson L. Paes & Raydonal Ospina & José L. Távora, 2022. "A statistical investigation of a stock valuation model," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    13. Bos, Martijn & Demirer, Riza & Gupta, Rangan & Tiwari, Aviral Kumar, 2018. "Oil returns and volatility: The role of mergers and acquisitions," Energy Economics, Elsevier, vol. 71(C), pages 62-69.
    14. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    15. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    16. Gupta, Rangan & Risse, Marian & Volkman, David A. & Wohar, Mark E., 2019. "The role of term spread and pattern changes in predicting stock returns and volatility of the United Kingdom: Evidence from a nonparametric causality-in-quantiles test using over 250 years of data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 391-405.
    17. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    18. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    19. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    20. Avino, Davide & Nneji, Ogonna, 2014. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 262-274.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.