IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/200918.html
   My bibliography  Save this paper

Is Water Shedding Next?

Author

Listed:
  • James Blignaut

    (Department of Economics, University of Pretoria)

  • Jan van Heerden

    (Department of Economics, University of Pretoria)

Abstract

South Africa is in the grip of an electricity crisis marked by a euphemism known as “load shedding”. The demand for electricity has grown to the point that the supply reserve margin is often under threat, necessitating the electricity supplier to cut supply to some areas for various periods of time, or to shed load. This is a condition previously unknown to South Africa since the country has enjoyed electricity security from the mid-1950s. Are we, however, heading in the same direction when considering water? Is water shedding inevitable? We ask these questions since South Africa is a country classified has having chronic water shortages, a condition exacerbated by climate change and the rapidly increasing demand for water. Can we avert a water shedding crisis by being proactive? In this paper we address this issue by applying a Computable General Equilibrium (CGE) model using an integrated database comprising South Africa’s Social Accounting Matrix (SAM) and sectoral water use balances. We refer to AsgiSA, the governments’ Accelerated and Shared Growth Initiative in South Africa, and conclude that continuing business as usual will indeed lead to a situation where water shedding will be inevitable. Unlike electricity, however, water security is much more serious from livelihood, health and socio-economic development perspectives since there are no substitutes for it, although its influence is not directly and immediately visible. This delayed effect can create a degree of comfort and ill-founded complacency leading to non-action, whereas there is an urgent need for proactive measures.

Suggested Citation

  • James Blignaut & Jan van Heerden, 2009. "Is Water Shedding Next?," Working Papers 200918, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:200918
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp141.zp39396.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven Renzetti, 1992. "Estimating the Structure of Industrial Water Demands: The Case of Canadian Manufacturing," Land Economics, University of Wisconsin Press, vol. 68(4), pages 396-404.
    2. van Heerden, Jan H. & Blignaut, James & Horridge, Mark, 2008. "Integrated water and economic modelling of the impacts of water market instruments on the South African economy," Ecological Economics, Elsevier, vol. 66(1), pages 105-116, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gill, Tania & Punt, Cecilia, 2010. "The Potential Impact of Increased Irrigation Water Tariffs in South Africa," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96425, African Association of Agricultural Economists (AAAE).
    2. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Rivers & Steven Groves, 2013. "The Welfare Impact of Self-supplied Water Pricing in Canada: A Computable General Equilibrium Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(3), pages 419-445, July.
    2. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    3. Garcia, Serge & Reynaud, Arnaud, 2004. "Estimating the benefits of efficient water pricing in France," Resource and Energy Economics, Elsevier, vol. 26(1), pages 1-25, March.
    4. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Ramón Barberán & Julio López-Laborda & Fernando Rodrigo, 2022. "The Perception of Residential Water Tariff, Consumption, and Cost: Evidence of its Determinants Using Survey Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2933-2952, July.
    6. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    7. Randy A. Becker, 2016. "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4185-4200, September.
    8. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    9. Gill, Tania & Punt, Cecilia, 2010. "The Potential Impact of Increased Irrigation Water Tariffs in South Africa," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96425, African Association of Agricultural Economists (AAAE).
    10. Jos順鲥s & Arnaud Reynaud & Alban Thomas, 2012. "Water reuse in Brazilian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(11), pages 1417-1427, April.
    11. Deng, Xiangzheng & Zhao, Yonghong & Wu, Feng & Lin, Yingzhi & Lu, Qi & Dai, Jing, 2011. "Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China," Ecological Modelling, Elsevier, vol. 222(2), pages 330-336.
    12. Antonio Musolesi & Mario Nosvelli, 2011. "Long-run water demand estimation: habits, adjustment dynamics and structural breaks," Applied Economics, Taylor & Francis Journals, vol. 43(17), pages 2111-2127.
    13. Dellink, Rob & Brouwer, Roy & Linderhof, Vincent & Stone, Karin, 2011. "Bio-economic modeling of water quality improvements using a dynamic applied general equilibrium approach," Ecological Economics, Elsevier, vol. 71(C), pages 63-79.
    14. Cristina Sarasa & Jean-Marc Philip & Julio Sánchez-Chóliz, 2013. "A tax policy strategy faces with future water availability using a dynamic CGE approach," EcoMod2013 5349, EcoMod.
    15. Wang, Hua & Xie, Jian & Li, Honglin, 2008. "Domestic water pricing with household surveys : a study of acceptability and willingness to pay in Chongqing, China," Policy Research Working Paper Series 4690, The World Bank.
    16. Dachraoui, Kaïs Harchaoui, Tarek, 2004. "Utilisation de l'eau, prix fictifs et productivité du secteur canadien des entreprises," Série de documents de recherche sur l'analyse économique (AE) 2004026f, Statistics Canada, Direction des études analytiques.
    17. Diane Dupont & Steven Renzetti, 2001. "The Role of Water in Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(4), pages 411-432, April.
    18. Ali, Md Kamar & Klein, K.K., 2014. "Implications of current and alternative water allocation policies in the Bow River Sub Basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 133(C), pages 1-11.
    19. Dachraoui, Kaïs Harchaoui, Tarek, 2004. "Water Use, Shadow Prices and the Canadian Business Sector Productivity Performance," Economic Analysis (EA) Research Paper Series 2004026e, Statistics Canada, Analytical Studies Branch.
    20. Lu, Wenjing & Li, Wei & Lin, Ji, 2022. "Damping effects of water and land constraints on economic growth in basin economic zones," Resources Policy, Elsevier, vol. 79(C).

    More about this item

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.