IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/72736.html
   My bibliography  Save this paper

Equation-by-Equation Estimation of Multivariate Periodic Electricity Price Volatility

Author

Listed:
  • Escribano, Alvaro
  • Sucarrat, Genaro

Abstract

Electricity prices are characterised by strong autoregressive persistence, periodicity (e.g. intraday, day-of-the week and month-of-the-year effects), large spikes or jumps, GARCH and -- as evidenced by recent findings -- periodic volatility. We propose a multivariate model of volatility that decomposes volatility multiplicatively into a non-stationary (e.g. periodic) part and a stationary part with log-GARCH dynamics. Since the model belongs to the log-GARCH class, the model is robust to spikes or jumps, allows for a rich variety of volatility dynamics without restrictive positivity constraints, can be estimated equation-by-equation by means of standard methods even in the presence of feedback, and allows for Dynamic Conditional Correlations (DCCs) that can -- optionally -- be estimated subsequent to the volatilities. We use the model to study the hourly day-ahead system prices at Nord Pool, and find extensive evidence of periodic volatility and volatility feedback. We also find that volatility is characterised by (positive) leverage in half of the hours, and that a DCC model provides a better fit of the conditional correlations than a Constant Conditional Correlation (CCC) model.

Suggested Citation

  • Escribano, Alvaro & Sucarrat, Genaro, 2016. "Equation-by-Equation Estimation of Multivariate Periodic Electricity Price Volatility," MPRA Paper 72736, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:72736
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/72736/1/MPRA_paper_72736.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    2. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    3. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    4. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    5. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    6. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
    7. Sucarrat, Genaro & Escribano, Alvaro, 2013. "Unbiased QML Estimation of Log-GARCH Models in the Presence of Zero Returns," MPRA Paper 50699, University Library of Munich, Germany.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Blazej Mazur & Mateusz Pipien, 2012. "On the empirical importance of periodicity in the volatility of financial time series," NBP Working Papers 124, Narodowy Bank Polski.
    10. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    11. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    12. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    13. Allan W. Gregory & Jonathan J. Reeves, 2010. "Estimation and Inference in ARCH Models in the Presence of Outliers," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 547-549, Fall.
    14. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    15. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    16. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    17. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    18. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    19. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    20. Bauwens, Luc & Hafner, Christian & Pierret, Diane, 2013. "Modelling multivariate volatility of electricity futures," LIDAM Reprints ISBA 2013030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    22. Hellström, Jörgen & Lundgren, Jens & Yu, Haishan, 2012. "Why do electricity prices jump? Empirical evidence from the Nordic electricity market," Energy Economics, Elsevier, vol. 34(6), pages 1774-1781.
    23. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    24. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    25. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
    26. Błażej Mazur & Mateusz Pipień, 2012. "On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Torrado & Álvaro Escribano, 2020. "European gasoline markets: price transmission asymmetries in mean and variance," Applied Economics, Taylor & Francis Journals, vol. 52(42), pages 4621-4638, September.
    2. Sucarrat, Genaro, 2018. "The Log-GARCH Model via ARMA Representations," MPRA Paper 100386, University Library of Munich, Germany.
    3. Comincioli, Nicola & Vergalli, Sergio, 2020. "Effects of Carbon Tax on Electricity Price Volatility: Empirical Evidences from the Australian Market," 2030 Agenda 305205, Fondazione Eni Enrico Mattei (FEEM).
    4. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    5. Carol Alexander & Daniel Heck & Andreas Kaeck, 2021. "The Role of Binance in Bitcoin Volatility Transmission," Papers 2107.00298, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sucarrat, Genaro, 2018. "The Log-GARCH Model via ARMA Representations," MPRA Paper 100386, University Library of Munich, Germany.
    2. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    3. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    4. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    5. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    6. PIERRET, Diane, 2013. "The systemic risk of energy markets," LIDAM Discussion Papers CORE 2013018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Silvennoinen Annastiina & Teräsvirta Timo, 2016. "Testing constancy of unconditional variance in volatility models by misspecification and specification tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 347-364, September.
    8. Cristina Amado & Annastiina Silvennoinen & Timo Terasvirta, 2017. "Modelling and Forecasting WIG20 Daily Returns," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 173-200, September.
    9. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    10. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    11. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    12. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    13. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    14. Jian Kang & Johan Stax Jakobsen & Annastiina Silvennoinen & Timo Teräsvirta & Glen Wade, 2022. "A Parsimonious Test of Constancy of a Positive Definite Correlation Matrix in a Multivariate Time-Varying GARCH Model," Econometrics, MDPI, vol. 10(3), pages 1-41, August.
    15. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    16. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    17. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    18. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    19. Kawakatsu Hiroyuki, 2021. "Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 33-52, January.
    20. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.

    More about this item

    Keywords

    Electricity prices; financial return; volatility; ARCH; exponential GARCH; log-GARCH; Multivariate GARCH; Dynamic Conditional Correlations; inverse leverage; Nord Pool;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:72736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.