IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/45615.html
   My bibliography  Save this paper

Financial Time Series Forecasting by Developing a Hybrid Intelligent System

Author

Listed:
  • Abounoori, Abbas Ali
  • Naderi, Esmaeil
  • Gandali Alikhani, Nadiya
  • Amiri, Ashkan

Abstract

The design of models for time series forecasting has found a solid foundation on statistics and mathematics. On this basis, in recent years, using intelligence-based techniques for forecasting has proved to be extremely successful and also is an appropriate choice as approximators to model and forecast time series, but designing a neural network model which provides a desirable forecasting is the main concern of researchers. For this purpose, the present study tries to examine the capabilities of two sets of models, i.e., those based on artificial intelligence and regressive models. In addition, fractal markets hypothesis investigates in daily data of the Tehran Stock Exchange (TSE) index. Finally, in order to introduce a complete design of a neural network for modeling and forecasting of stock return series, the long memory feature and dynamic neural network model were combined. Our results showed that fractal markets hypothesis was confirmed in TSE; therefore, it can be concluded that the fractal structure exists in the return of the TSE series. The results further indicate that although dynamic artificial neural network model have a stronger performance compared to ARFIMA model, taking into consideration the inherent features of a market and combining it with neural network models can yield much better results.

Suggested Citation

  • Abounoori, Abbas Ali & Naderi, Esmaeil & Gandali Alikhani, Nadiya & Amiri, Ashkan, 2013. "Financial Time Series Forecasting by Developing a Hybrid Intelligent System," MPRA Paper 45615, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:45615
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/45615/1/MPRA_paper_45615.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/45858/1/MPRA_paper_45615.pdf
    File Function: revised version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    4. Hondroyiannis, George & Lolos, Sarantis & Papapetrou, Evangelia, 2005. "Financial markets and economic growth in Greece, 1986-1999," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(2), pages 173-188, April.
    5. Kuswanto, Heri & Sibbertsen, Philipp, 2008. "A Study on "Spurious Long Memory in Nonlinear Time Series Models"," Hannover Economic Papers (HEP) dp-410, Leibniz Universit├Ąt Hannover, Wirtschaftswissenschaftliche Fakult├Ąt.
    6. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014. "Predicting BRICS stock returns using ARFIMA models," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
    7. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    8. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Matkovskyy, Roman, 2012. "Forecasting the Index of Financial Safety (IFS) of South Africa using neural networks," MPRA Paper 42153, University Library of Munich, Germany.
    11. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    12. Mohsin S. Khan & Abdelhak S. Senhadji, 2003. "Financial Development and Economic Growth: A Review and New Evidence," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 12(Supplemen), pages 89-110, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.

    More about this item

    Keywords

    Stock Return; Long Memory; NNAR; ARFIMA; Hybrid Models;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:45615. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.