IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/41461.html
   My bibliography  Save this paper

New Taxonomies for Limited Dependent Variables Models

Author

Listed:
  • Biørn, Erik
  • Wangen, Knut R.

Abstract

We establish a `map' for describing a wide class of Limited Dependent Variables models much used in the econometric literature. The classification system, or language, is an extension of Amemiya's typology for tobit models and is intended to facilitate communication among researchers. The class is defined in relation to distributions of latent variables of an arbitrarily high dimension; the region of support can be divided into an arbitrary number of subsets, and the observation rules in each subset can be any combination of the observed, censored, and missing status. Consistent labeling is suggested at different levels of detail.

Suggested Citation

  • Biørn, Erik & Wangen, Knut R., 2012. "New Taxonomies for Limited Dependent Variables Models," MPRA Paper 41461, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41461
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/41461/1/MPRA_paper_41461.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Toomet, Ott & Henningsen, Arne, 2008. "Sample Selection Models in R: Package sampleSelection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i07).
    2. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    3. Wendelin Schnedler, 2005. "Likelihood Estimation for Censored Random Vectors," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 195-217.
    4. Dagenais, Marcel G, 1975. "Application of a Threshold Regression Model to Household Purchases of Automobiles," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 275-285, August.
    5. Li, Phillip, 2011. "Estimation of sample selection models with two selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1099-1108, February.
    6. Nelson, Forrest D., 1977. "Censored regression models with unobserved, stochastic censoring thresholds," Journal of Econometrics, Elsevier, vol. 6(3), pages 309-327, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Limited dependent variables; Latent variables; Censoring; Truncation; Missing observations;

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41461. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.